|
|||||||||
11.
Тема 11. Выборочное наблюдение
11.1.
Понятие о выборочном наблюдении
По понятным причинам выборочный метод может широко использоваться органами государственной статистики. Он позволяет при значительной экономии средств и затрат получать необходимую достоверную информацию. Гарантия репрезентативности обеспечивается применением научно обоснованных способов отбора единиц, которые подлежат обследованию. Следует сразу же иметь в виду, что при сопоставлении показателей по результатам выборочного исследования с характеристиками для всей генеральной совокупности могут иметь место отклонения. Величина этих отклонений называется ошибкой наблюдения, которая может быть или В статистике приняты следующие условные обозначения: N - объем генеральной совокупности; п - объем выборочной совокупности;
р - доля единиц в генеральной совокупности; w - доля единиц в выборочной совокупности;
S2 - выборочная дисперсия;
S - среднее квадратическое отклонение признака в выборочной совокупности. 11.2.
Виды выборки, способы отбора и ошибки выборочного наблюдения
По способу отбора (способу формирования) выборки единиц из генеральной совокупности распространены следующие виды
Для
Выборочный отбор может быть повторным и бесповторным. При Для отобранных единиц рассчитываются обобщенные показатели (средние или относительные) и в дальнейшем результаты выборочного исследования распространяются на всю генеральную совокупность. Основной задачей при выборочном исследовании является определение ошибок выборки. Принято различать среднюю и предельную ошибки выборки. Для иллюстрации можно предложить расчет ошибки выборки на примере простого случайного отбора. Расчет средней ошибки повторной простой случайной выборки производится следующим образом: cредняя ошибка для средней
cредняя ошибка для доли
Расчет средней ошибки бесповторной случайной выборки: средняя ошибка для средней
средняя ошибка для доли
Расчет предельной ошибки предельная ошибка для средней предельная ошибка для доли
где t - коэффициент кратности; Расчет предельной ошибки бесповторной случайной выборки: предельная ошибка для средней
предельная ошибка для доли
Следует обратить внимание на то, что под знаком радикала в формулах при бесповторном отборе появляется множитель, где N - численность генеральной совокупности. Что касается расчета ошибки выборки в других видах выборочного отбора (например, типической и серийной), то необходимо отметить следующее. Для типической выборки величина стандартной ошибки зависит от точности определения групповых средних. Так, в формуле предельной ошибки типической выборки учитывается средняя из групповых дисперсий, т.е.
При серийной выборке величина ошибки выборки зависит не от числа исследуемых единиц, а от числа обследованных серий (s) и от величины межгрупповой дисперсии:
Серийная выборка, как правило, проводится как бесповторная, и формула ошибки выборки в этом случае имеет вид
где Все вышеприведенные формулы применимы для большой выборки. Кроме большой выборки используются так называемые малые выборки (n < 30), которые могут иметь место в случаях нецелесообразности использования больших выборок. При расчете ошибок малой выборки необходимо учесть два момента: 1) формула средней ошибки имеет вид
2) при определении доверительных интервалов исследуемого показателя в генеральной совокупности или при нахождении вероятности допуска той или иной ошибки необходимо использовать таблицы вероятности В статистических исследованиях с помощью формулы предельной ошибки можно решать ряд задач. 1. Определять возможные пределы нахождения характеристики генеральной совокупности на основе данных выборки. Доверительные интервалы для генеральной средней можно установить на основе соотношений
где - Доверительные интервалы для генеральной доли устанавливаются на основе соотношений
2. Определять доверительную вероятность, которая означает, что характеристика генеральной совокупности отличается от выборочной на заданную величину. Доверительная вероятность является функцией от t, где
Доверительная вероятность по величине t определяется по специальной таблице. 3. Определять необходимый объем выборки с помощью допустимой величины ошибки:
Чтобы рассчитать численность п повторной и бесповторной простой случайной выборки, можно использовать следующие формулы:
11.3.
Методы распространения выборочного наблюдения на генеральную совокупность
Основными методами распространения выборочного наблюдения на генеральную совокупность являются прямой пересчет и способ коэффициентов.
При этом рекомендуется использовать формулу
где Y1 - численность совокупности с поправкой на недоучет; Y0 - численность совокупности без этой поправки; y0 - численность совокупности в контрольных точках по первоначальным данным; y1 - численность совокупности в тех же точках по данным контрольных мероприятий. Если нужно уточнить данные сплошного наблюдения при осуществлении контроля за выборочными исследованиями, необходимо определить поправку на недоучет. Метод расчета этой поправки широко применяется при исследовании небольших совокупностей, когда можно рассчитать коэффициент недоучета по каждой категории работников и, уточнив данные, распространить результаты на всю совокупность. Пример: при проведении сплошного учета гаражей-ракушек в городе было зарегистрировано по южному (Ю) району 1000 гаражей; по северному (С) - 750; восточному (В) - 400. На основе контрольных выборочных мероприятий было установлено следующее количество гаражей, шт.:
Используя формулу способа коэффициентов (или используя рассчитанный коэффициент при выборочном учете), получаем численность гаражей после контроля (У) с поправкой на недоучет: У(Ю) = 1000 У(В) = 400 В итоге можно сказать, что на основе способа коэффициентов проверка результатов сплошного наблюдения широко применяется в социальной и экономической статистике, в частности в контроле за коммерческой деятельностью юридических и физических лиц со стороны финансовых организаций. |
|||||||||
|
|||||||||
© Центр дистанционного образования МГУП |