|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Рис. 01.01. Обобщенный вид поверочной схемы
1.3.
Принципы построения систем единиц физических величин
Проблема выбора системы единиц физических величин совсем недавно не могла полностью относиться к нашему произволу. С точки зрения материалистической философии нам непросто было убедить кого-либо в том, что большой раздел естественных наук, относящийся к обеспечению единства измерений, в основе своей опирается на зависимость основных моментов от нашего сознания. Можно обсуждать, хорошо или плохо составлена система единиц физических единиц, но факт, что в основе своей любая система величин и единиц имеет произвол, связанный с человеческим сознанием, остается бесспорным. В данном разделе на различных примерах мы рассмотрим возможности построения систем единиц физических величин, чтобы в дальнейшем при описании системы единиц СИ или каких-либо других систем можно было бы оценить положительные и отрицательные моменты каждой из них. Прежде всего начнем с определений. Единицы физических величин подразделяются на основные и производные. До 1995 г. имели место еще дополнительные единицы - единицы плоского и телесного угла, радиан и стерадиан,- но с целью упрощения системы эти единицы были переведены в категорию безразмерных производных единиц.
Основные единицы выбираются так, чтобы пользуясь закономерной связью между величинами можно было бы образовать единицы других величин. Соответственно, образованные таким образом величины и единицы называются производными. Самый главный вопрос при построении систем единиц состоит в том, сколько должно быть основных единиц или, более точно, какими принципами нужно руководствоваться при построении той или иной системы? Частично в метрологической литературе можно найти утверждение, что главный принцип системы должен состоять в минимальном количестве основных единиц. На самом деле такой подход является неверным, так как следуя этому принципу такая величина и единица может быть одна. Например, через энергию можно выразить практически любую физическую величину, т. к. в механике энергия равна:
Используя указанные законы и опираясь на Для того чтобы сказанное выглядело более убедительно, рассмотрим основные механические единицы, принятые в большинстве систем - единицы длины, времени и массы. Эти величины являются основными, т. е. выбраны произвольно и независимо друг от друга. Рассмотрим теперь, какова степень этой независимости и нельзя ли сократить число произвольно выбранных основных механических единиц. Большинство из нас привыкло к тому, что второй закон Ньютона записывается как
где F - сила взаимодействия, m - масса тела, а - ускорение движения, и это выражение является определением инерционной массы. С другой стороны, масса гравитационная согласно закону всемирного тяготения определяется из соотношения
где r - расстояние между телами и γ- гравитационная постоянная, равная
Рассматривая, например, равномерное движение одного тела вокруг другого по окружности, когда сила инерции Fi равна силе гравитации Fg , и учитывая, что масса m в обоих законах есть одна и та же величина, получим:
Далее, учитывая, что угловое ускорение ω связано с линейным выражением
где Т - период обращения, получим
Это есть выражение для третьего закона Кепплера, давно известного для движения небесных тел, т. е. мы получили связь между временем Т, длиной r и массой m в виде
Это означает, что достаточно положить коэффициент К равным единице, и единица массы будет определена через длину и время. Значение этого коэффициента
является следствием только того факта, что мы произвольно выбрали единицу массы и для приведения ситуации в соответствие с физическими законами обязаны в законе Кепплера ввести дополнительный множитель К. Приведенный пример наглядно показывает, что число основных единиц может быть изменено как в меньшую, так и в большую сторону, т. е. полностью зависит от нашего выбора, определяемого удобством практического использования системы. Естественно, что выбрав произвольно какую-либо единицу в качестве основной, мы произвольно выбираем размер этой единицы. В механических измерениях длину, время и массу мы имеем возможность сравнивать с любыми выбранными в качестве исходных одноименными величинами. По мере развития метрологии определения размера величин основных единиц неоднократно изменялись, тем не менее ни на физических законах, ни на единстве измерений это не отразилось. Покажем, что произвол выбора размера единицы имеет место не только для основных, произвольно выбранных величин, но и для величин производных, т. е. связанных с основным каким-либо физическим законом. В качестве примера вернемся к определениям силы через инерционные свойства тел или через гравитационные свойства. Мы предполагаем, что основными величинами являются длина, время и масса. Ничто не мешает считать равным единице коэффициент пропорциональности в законе всемирного тяготения, т. е. считать, что
Тогда во втором законе Ньютона мы обязаны будем ввести коэффициент пропорциональности, называемый инерционной постоянной, т. е.
Значение инерционной постоянной должно равняться
Аналогичную картину можно проследить, выражая и принимая единицу площади. Мы привыкли к тому, что единицей площади считается площадь квадрата со стороной в единицу длины - квадратный метр, квадратный сантиметр и т. д. Однако никто не запрещает в качестве единицы площади выбрать площадь круга с диаметром в 1 метр, т. е. считать, что
В этом случае площадь квадрата выразится
Такая единица площади, называемая «круглый метр», очень удобна в измерении площадей кругов. Очевидно, что «круглый метр» будет в 4/тг раз меньше «квадратного метра». Следующий вопрос в проблеме выбора единиц системы состоит в определении целесообразности введения новых основных единиц при рассмотрении нового класса физических явлений. Начнем с электромагнитных явлений. Хорошо известно, что электрические явления опираются на закон Кулона, связывающий механические величины - силу взаимодействия и расстояния между зарядами - с электрической величиной - зарядом:
В законе Кулона, как и в других законах, где упоминаются векторные величины, мы опускаем единичный вектор
где q - заряд, определенный законом Кулона; t - время. Все остальные единицы электрических величин определяются из законов электростатики и электродинамики. Тем не менее в большинстве систем единиц, в том числе и в системе СИ, для электрических явлений вводится произвольно своя электрическая основная единица. В системе СИ это
В результате повторилась ситуация, рассмотренная выше, когда одна и та же физическая величина определяется дважды. Один раз через величины механические - формула (1.21) .другой раз через Ампер-формула (1.23). Такая неоднозначность заставляет ввести в закон Кулона дополнительный коэффициент, получивший название «диэлектрическая проницаемость вакуума». Закон Кулона приобретает вид:
О физическом смысле диэлектрической постоянной вакуума часто задают вопросы, когда хотят выяснить степень понимания сущности закона Кулона. С метрологической точки зрения все просто и понятно: вводя произвольно основную единицу электричества - ампер - мы должны принять меры к тому, чтобы имелось соответствие механических единиц, введенных ранее, их новому возможному выражению с использованием ампера. Точно такая же ситуация может быть прослежена в температурных измерениях с введением произвольно основной единицы - Кельвина, а также в оптических измерениях с введением канделы. Здесь подробно рассмотрена ситуация с выбором единиц основных физических величин и с выбором их размера для того, чтобы доказать суть главного принципа построения систем единиц физических единиц. Этот принцип - удобство практического использования. Только эти ми соображениями определяется число основных единиц, выбор их размера, и все дополнительные, вторичные принципы отталкиваются от этого как от основного. Таковым, например, является известный принцип, гласящий, что в качестве основной величины нужно выбрать такую, единица которой может быть воспроизведена с наивысшей возможной точностью. Однако это желательно, но в ряде случаев нецелесообразно. В частности в механических измерениях единица частоты - В электрических измерениях точнее Ампера может быть воспроизведен Окончательным подтверждением выбора системы единиц на основе принципа удобства использования являются два момента. Первый - это факт присутствия в Второй - факт использования в целом ряде случаев систем единиц, отличных от системы СИ. Многие годы и десятилетия метрологи пытаются оставить одну единственную систему единиц. Тем не менее, в расчетах атомных и молекулярных структур система СИ неудобна, и люди продолжают использовать атомную систему единиц, в которой основными являются величины, определяемые размерами атома и процессами, происходящими в атоме. При рассмотрении различных систем единиц мы подробно остановимся на построении этой системы. Точно также система СИ оказывается неудобной при измерениях расстояний до космических объектов. В этой области сложилась своя специфическая система единиц и величин. Обобщая, выбор в 1.4.
Воспроизведение и передача размера единиц физических величин. Эталоны и образцовые средства измерения
После выбора Однозначного толкования разграничений между этими тремя понятиями до сих пор не существует. Возможные версии неоднозначны. Например, одна из точек зрения состоит в том, что если средство измерения высшей точности создано в Госстандарте РФ, то это эталон. Если в каком-либо министерстве или ведомстве, то УВТ или ИОСИ. Другая точка зрения состоит в том, что если точность измерения на средстве высшей точности сопоставима с точностью других эталонов, то его можно считать эталоном. И, наконец, третья точка зрения - считать все, что создается в столице эталоном, а все, что создается в регионах - УВТ или ИОСИ. Последнее, несмотря на разумность основного посыла, все-таки смысла лишено, т. к. Главная палата мер и весов России традиционно находится в Санкт-Петербурге и именно там находится большинство эталонов РФ. На самом деле статус средства высшей точности определяется каждый раз индивидуально. Во внимание принимается престижность. Эталон - более престижное образование, чем УВТ или ИОСИ. Кроме того, учитываются массовость вида измерений, распространенность рабочих приборов по территории страны или по различным ведомствам. Приборы узкого круга использования, например озонометры, вполне можно метрологически обеспечить установкой высшей точности. Напротив, приборы массового использования, например термометры, желательно обеспечивать используя эталон. С этим же фактором связана простота или сложность утверждения средства измерения высшей точности. Сложнее всего по процедурным соображениям создать и утвердить эталон. Проще всего - установку высшей точности. Образцовые средства измерений представляют собой меры и измерительные приборы, предназначенные для поверки и градуировки других средств измерений. На такие приборы выдаются свидетельства на право проведения поверки. Образцовые средства измерений особенно необходимы в массовых видах измерений. Метрологические правила предписывают поверять средство измерения другим средством, погрешность показаний которого в 2-3 раза ниже, чем у поверяемого прибора. Метрологическая цепь передачи размера единицы от эталона к рабочим средствам измерения, принятая сначала в СССР, а теперь в России, получила название поверочной схемы. Обобщенный вида поверочной схемы приведен на рис. 1.1 Несколько лет назад поверочная схема на средства измерений имела законодательный характер. В настоящее время многие поверочные схемы составляются как документ рекомендательный. Структура В период существования СССР в нашей стране поверочные схемы имели статус государственного стандарта, т. е. были обязательными к исполнению по всей территории. В отсутствие рыночного регулирования качества продукции, в том числе и измерительной техники, такая мера были и оправдана и необходима. На самом деле такая практика обладала целым рядом недостатков. Самый главный из них - это создание препятствий на пути внедрения новой техники. Если создавался какой-либо измерительный прибор высокого класса точности, то применение его затруднялось до внесения его в поверочную схему. Поскольку эта процедура непростая и занимает много времени, часто хорошие приборы долгое время оказывались как бы вне закона, т. е. их использование и поверка были затруднены. Еще один недостаток жесткой системы соблюдения предписаний поверочной схемы - это необходимость иметь во всех центрах поверки большое количество образцовых приборов. Нельзя, например, было поверять рабочие приборы непосредственно по рабочим эталонам. С другой стороны, практика использования поверочных схем у нас в стране и в странах СЭВ сыграла и большую положительную роль в метрологии. При составлении поверочных схем тщательно анализировались различные методы и средства измерения какой-либо физической величины, а результат представлялся в лаконичной доступной форме. Средства измерения высшей точности - эталоны - подразделяются на несколько категорий. Эталон, воспроизводящий единицу с наивысшей в стране точностью, называется В метрологической практике широко используются
Рабочие эталоны могут быть реализованы в виде одиночного эталона (или одиночной меры), в виде группового эталона, в виде комплекса средств измерений и в виде эталонного набора. Пример одиночного эталона - эталон массы в виде платино-иридиевой гири. Пример группового эталона - эталон-копия вольта, состоящая из 20 нормальных элементов. Пример комплекса средств измерений - эталон единицы молярной доли концентрации компонентов в газовых смесях. В этом виде измерений различные компоненты, различные диапазоны концентраций, различные газы-разбавители создают огромное количество измерительных задач с одной общей идеологией. По этой причине один эталон состоит из нескольких десятков измерительных установок. И, наконец, пример эталонного набора - набор средств измерения плотности жидкостей для различных участков диапазона. По мере рассмотрения различных видов измерений мы не раз будем сталкиваться с той или иной разновидностью общего определения категорий и понятий, так как метрологический терминологический набор достаточно жестко определен, а в технике иногда пренебрегают требованиями к терминам. В международной метрологической практике такого широкого набора разновидностей эталонов не обозначено. Международные эталоны, хранящиеся в Международном бюро по мерам и весам, воспроизводят ограниченное число единиц физических величин. Обычно это либо основные единицы системы СИ, либо единицы, которые могут быть воспроизведены на уровне точности, равной или даже превосходящей точность эталона основной единицы. Пример такого эталона - эталон Вольта на эффекте Джозефсона. Меньшее в сравнении с отечественным число международных эталонов объясняется тем, что во многих странах понятие эталон и образцовое средство измерения не имеют четкого разграничения. Существует емкое понятие - стандарт (standart) - что по смыслу может быть переведено как вторичный стандарт (образцовое средство измерения) или как эталон (исходное образцовое средство измерения). 1.5.
Измерительные приборы и установки
Измерения физических величин выполняются с помощью устройств, называемых измерительными приборами или измерительными установками.
Кроме измерительных приборов и вспомогательных устройств в состав измерительных установок часто входят меры или наборы мер. Сюда относятся гири, катушки, магазины сопротивлений и индуктивностей, нормальные гальванические элементы и т. д. К специфическим мерам относят стандартные образцы свойств и состава веществ и материалов. Измерительные приборы и установки характеризуются пределами измерений, чувствительностью, ценой деления и точностью. Чувствительность. Всякое
Иногда понятие чувствительности трактуют иначе, определяя ее как отношение сигналов на входе и на выходе преобразователя. В зависимости от вида функции I = F(x) чувствительность может быть либо постоянной величиной, либо величиной, зависящей от х. В первом случае говорят, что прибор имеет линейную шкалу, во втором случае - нелинейную. Уместно указать сразу, что линейность шкалы зависит не только от характеристик преобразователя, но и от выбора единиц физических величин . Наряду с чувствительностью при многих видах измерений важное значение имеет
где I и φ есть линейное и угловое перемещения. Приборы, имеющие нелинейную зависимость отсчета от измеряемой величины, часто снабжаются неравномерной шкалой, деления которой пропорциональны х. Эта шкала может быть оцифрована непосредственно в единицах х или в каких-либо произвольных единицах. Точность прибора. В зависимости от класса точности приборы разделяются на классы: первый, второй и т.д. Допускаемые погрешности для разных типов приборов регламентируются государственными стандартами.
При градуировке показания прибора сравнивают с показаниями другого более точного прибора или используют меру соответствующего класса точности. Результаты градуировки обычно представляют в одной из следующих форм:
Измерительные приборы в большинстве своем состоят из На первичных преобразователях, датчиках имеет смысл останавливаться при рассмотрении конкретных видов измерения. Это могут быть термопары, датчики давления, температуры, влажности, концентрационно чувствительные датчики, фотоприемники различных типов, микрофоны.
Здесь мы останавливаем внимание читателя на аспектах чисто метрологического плана, обычно не затрагиваемых в технической литературе.
Во многих случаях процесс измерения сводится к простому считыванию результата по шкале или с цифрового индикатора. Такие методы называют Значительно более точными, но и более трудоемкими являются Несколько более удобной разновидностью метода компарирования является Нулевой и дифференциальный методы обеспечивают снижение случайной погрешности. Для борьбы с систематическими погрешностями полезна другая разновидность компарирования - методзамещения. Так, измеряя сопротивление можно включить в цепь амперметр и вольтметр, а затем, сняв их показания, заменить измеряемое сопротивление магазином эталонных сопротивлений так, чтобы получить те же отсчеты амперметра и вольтметра. Очевидно, что погрешность в градуировке Интересной разновидностью компарирования является метод совпадений, применяемый к периодическим во времени или в пространстве процессам. Если, например, необходимо измерить частоту ν, имея генератор стандартной частоты ν0, то метод совпадений означает регистрацию совпадения n1 номера частоты ν с n0 номером частоты ν0. Тогда процесс измерения частоты сводится к измерению номеров периодических процессов. Если эталонная частота ν0 хорошо известна, то с той же практически точностью измеряются частота |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
© Центр дистанционного образования МГУП |