Московский государственный университет печати

Козлов М.Г.


         

Метрология и стандартизация

Учебник


Козлов М.Г.
Метрология и стандартизация
Начало
Печатный оригинал
Об электронном издании
Оглавление

Предисловие

Часть I. МЕТРОЛОГИЯ

1.

Введение в метрологию

1.1.

Исторические аспекты метрологии

1.2.

Основные понятия и категории метрологии

1.3.

Принципы построения систем единиц физических величин

1.4.

Воспроизведение и передача размера единиц физических величин. Эталоны и образцовые средства измерения

1.5.

Измерительные приборы и установки

1.6.

Меры в метрологии и измерительной технике. Поверка средств измерений

1.7.

Физические константы и стандартные справочные данные

1.8.

Стандартизация в обеспечении единства измерений. Метрологический словарь

2.

Основы построение систем единиц физических величин

2.1.

Системы единиц физических величин

2.2.

Формулы размерности

2.3.

Основные единицы системы СИ

2.4.

Единица длины системы СИ - метр

2.5.

Единица времени системы СИ - секунда

2.6.

Единица температуры системы СИ - Кельвин

2.7.

Единица силы электрического тока системы СИ - Ампера

2.8.

Реализация основной единицы системы СИ - единицы силы света - канделы

2.9.

Единица массы системы СИ - килограмм

2.10.

Единица количества вещества системы СИ - моль

3.

Оценка погрешностей результатов измерения

3.1.

Введение

3.2.

Систематические погрешности

3.3.

Случайные погрешности измерений

Часть II. ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА

4.

Введение в измерительную технику

5.

Измерения механических величин

5.1.

Линейные измерения

5.2.

Измерения шероховатости

5.3.

Измерения твердости

5.4.

Измерения давления

5.5.

Измерения массы и силы

5.6.

Измерения вязкости

5.7.

Измерение плотности

6.

Измерения температуры

6.1.

Методы измерения температуры

6.2.

Контактные термометры

6.3.

Неконтактные термометры

7.

Электрические и магнитные измерения

7.1.

Измерения электрических величин

7.2.

Принципы, лежащие в основе магнитных измерений

7.3.

Магнитные преобразователи

7.4.

Приборы для измерения параметров магнитных полей

7.5.

Квантовые магнитометрические и гальваномагнитные приборы

7.6.

Индукционные магнитометрические приборы

8.

Оптические измерения

8.1.

Общие положения

8.2.

Фотометрические приборы

8.3.

Спектральные измерительные приборы

8.4.

Фильтровые спектральные приборы

8.5.

Интерференционные спектральные приборы

9.

ФИЗИКО-ХИМИЧЕСКИЕ ИЗМЕРЕНИЯ

9.1.

Особенности измерения состава веществ и материалов

9.2.

Измерения влажности веществ и материалов

9.3.

Анализ состава газовых смесей

9.4.

Измерения состава жидкостей и твердых тел

9.5.

Метрологическое обеспечение физико-химических измерений

Часть III. СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

10.

Организационные и методические основы метрологии и стандартизации

10.1.

Введение

10.2.

Правовые основы метрологии и стандартизации

10.3.

Международные организации по стандартизации и метрологии

10.4.

Структура и функции органов Госстандарта РФ

10.5.

Государственные службы по метрологии и стандартизации РФ

10.6.

Функции метрологических служб предприятий и учреждений, являющихся юридическими лицами

11.

Основные положения государственной службы стандартизации РФ

11.1.

Научная база стандартизации РФ

11.2.

Органы и службы систем стандартизации РФ

11.3.

Характеристика стандартов разных категорий

11.4.

Каталоги и классификаторы продукции как объект стандартизации. Стандартизация услуг

12.

Сертификация измерительной техники

12.1.

Основные цели и задачи сертификации

12.2.

Термины и определения, специфические для cертификации

12.3.

12.3. Системы и схемы сертификации

12.4.

Обязательная и добровольная сертификация

12.5.

Правила и порядок проведения сертификации

12.6.

Аккредитация органов по сертификации

12.7.

Сертификация услуг

Заключение

Приложения

Указатели
12   именной указатель
583   предметный указатель
145   указатель иллюстраций
Рис. 06.04. Схема контактного термометра Рис. 06.05. Схема дилатометрического термометра Рис. 06.06. Схема биметаллического датчика температуры Рис. 06.07. Схема «тепловой трубы» Рис. 06.08. Схема подключения дифференциальной термопары Рис. 06.09. Регистрация температуры радиометром Рис. 06.10. Пирометр с исчезающей нитью Рис. 06.02. Распределение энергии в спектре излучения абсолютно черного тела (формула 6.8) Рис. 06.10. Пирометр с исчезающей нитью

Контактные термометры представляют собой самые массовые средства измерения температуры. Каждый сталкивается с контактными температурами в быту и на производстве, и в большинстве случаев это были либо волюметрические, либо дилатометрические термометры. Волюметрическими термометрами измеряют температуру тела и температуру воздуха, дилатометрический датчик температуры есть в каждом домашнем холодильнике.

Наиболее распространенный тип Термометр волюметрическийволюметрических термометров представляет собой колбу с жидкостью или газом, заканчивающуюся тонким капилляром. Над объемом термометрической жидкости оставляют свободное пространство - Вакуум вакуум, - которое заполняется при температурном расширении жидкости. За капилляром устанавливается шкала, отградуированная в единицах температуры. В ряде случаев для более точных измерений уровень термометрической жидкости измеряется с использованием зрительной трубы, положение которой можно изменять вдоль направления расположения капилляра. Зрительная труба такого термометра имеетшкалу с нониусом, что позволяет проводить точные измерения.

Газовые волюметрические термометры на практике встречаются значительно реже, чем жидкостные. В основном их применяют для прецизионных измерений. Например, во многих установках высшей точности используют именно газовые термометры в силу того, что процесс изменения объема газа описывается достаточно точно уравнениями газового состояния. Напомним, что газовые термометры конструктивно выполняются как термометры постоянного объема и постоянной температуры. Схема некоторых таких газовых термометров рассмотрены нами в разделе, посвященном метрологии.

Волюметрические контактные термометры в ряде случаев изготавливаются для порогового измерения температуры илидля поддержания фиксированной температуры системой автоматического регулирования. Чаще всего такие термометры изготавливаются с ртутным наполнением. Ртуть, расширяясь, касается поверхностью контактного проводника, положение которого фиксируется специальным устройством. Положение проводника можно изменять вращением магнита, расположенного саружи корпуса термометра (см. рис. 6.4Рис. 06.04. Схема контактного термометра).

В Термометр дилатометрическийдилатометрических термометрах для получения информации о температуре используется тепловое расширение твердых тел, в основном металлов. Принцип действия дилатометрических датчиков температуры поясняется схемой рис. 6.5Рис. 06.05. Схема дилатометрического термометра.

Разновидностью дилатометрических термометров являются датчики температуры с биметаллическими пластинами. Используя тот же принцип работы - тепловое расширение тел при нагревании - в биметаллических датчиках измеряется не удлинение, а изгиб пластины, состоящей из двух металлов с разными температурными коэффициентами расширения. Схема такого датчика, получившего широкое применение в различных системах регулирования температуры, дана на рис. 6.6Рис. 06.06. Схема биметаллического датчика температуры.

В решении специальных задач, например, при необходимости измерять температуру в экспериментальных установках, в ядерных реакторах, на космических станциях и т. п. используются некоторые специальные методы измерения температуры, основанные на специфических физических явлениях. Например, температуру можно измерить путем измерения давления насыщенных паров над поверхностью жидкой или твердой фазы этого вещества. Для реальных веществ между давлением насыщенного пара и температурой существует однозначная зависимость вида:

<?xml version="1.0" encoding="UTF-16"?>
(6.17)

где А, В, С и D - эмпирические константы, известные практически для всех чистых веществ. Таким образом, можно не только измерить температуру по изменению давления, но и регулировать температуру в каком-либо замкнутом объеме, изменяя внешнее давление.

Устройство, в котором реализован принцип изменения температуры изменением внешнего давления, получил в технике измерений название Термостат 'тепловая труба'«тепловая труба». Принцип действия термостата такого типа состоит в том, что в трубу из тугоплавкого металла помещается другой, более легкоплавкий металл, имеющий значительную упругость пара при тех температурах, на которые рассчитан термостат. Внутри трубы легкоплавкий металл помещают на металлическую сетку из металла, который хорошо смачивается металлом - наполнителем. Схема термостата «тепловая труба» показана на рис. 6.7Рис. 06.07. Схема «тепловой трубы».

Действие тепловой трубы заключается в следующем:

  • объем, содержащий тугоплавкую трубу с металлической сеткой и легкий металл, откачивают;

  • внутрь тепловой трубы напускают какой-либо буферный инертный газ до давления pт;

  • включают СВЧ нагреватель.

Металл на сетке расплавляется и интенсивно испаряется. При этом температура устанавливается в точном соответствии с уравнением упругости 6.17 для испаряемого металла. В холодных участках тепловой трубы испаряемый металл конденсируется на сетке и по ней как по фитилю за счет капиллярных сил возвращается в зону испарения. Характерно, что температура внутри тепловой трубы не зависит от мощности нагревателя, а определяется только внешним давлением буферного газа. Изменение проводимой нагревателем мощности приводит к ускорению процесса свободной перегонки испаряемого металла, но не изменяет температуры, при которой протекает процесс.

Для измерения низких температур в несколько Кельвин используют специальные термометры. Например, для измерения температуры, незначительно отличающейся от абсолютного нуля (Т ≤ 1 К) используется Термометр магнитныймагнитный термометр, в котором используется принцип адиабатического размагничивания парамагнитного вещества. Магнитная проницаемость парамагнитных веществ в эе зависит от температуры, и для некоторых из них справедлив закон Кюри:

<?xml version="1.0" encoding="UTF-16"?>
(6.18)

где С - константа, зависящая от намагничивания насыщения, называемая константой Кюри. Константа Кюри устанавливается экспериментально из гистерезисных измерений.

Температуры от 2 К до 70 К измеряют термометром, который называют Термометр акустическийакустическим. Используется зависимость скорости звука в газах C0 от температуры:

<?xml version="1.0" encoding="UTF-16"?>
(6.19)

где Cp/Cv - экстраполированное к нулевому давлению отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме; μ - молекулярный вес газа; R - универсальная газовая постоянная. Для одноатомных газов Cp/Cv = 5/2. В акустическом термометре измеряется скорость звука в газе и затем температура вычисляется по формуле (6.19).

Особый класс контактных термометров составляют Термопартермопары и термосопротивления. Их преимущество перед волюметрическими и дилатометрическими термометрами состоит в том, что для них имеется возможность регистрации электрического сигнала, однозначно связанного с температурой. Это позволяет изготавливать электронные термометры, в которых измеряемой величиной является или разность потенциалов, или ток в термопарах, или сопротивление в терморезисторах. Кроме того, термопары и термосопротивления для некоторых материалов, например для пластины и ее сплавов, обладают высокостабильными воспроизводимыми электрическими характеристиками. Это дает возможность использовать их в качестве образцовых средств измерения или в качестве средств передачи размера единицы температуры от одного эталона к другому.

Принцип действия термопар основан на возникновении разности потенциалов между местами спайки двух разнородных проводников. При спаивании двух проводников в контакт приводятся две проводящие среды с различными концентрациями свободных носителей заряда, например, электронов. Концентрации выравниваются, и на свободных концах проводников возникает разность потенциалов. Если теперь спаять вторые концы проводников и поддерживать у двух спаев разную температуру, то по проводникам пойдет электрический ток. Если цепь разомкнута, в точке разрыва появится разность потенциалов, зависящая от разности температур спаев. Температуру можно измерять по силе тока, которая пойдет в замкнутой цепи с термопарой, либо по разности потенциалов между проводниками. В том случае, когда один из спаев помещается в термостат с известной температурой, термопара измеряет разность температур между спаями. Такая термопара называется дифференциальной (рис. 6.8Рис. 06.08. Схема подключения дифференциальной термопары).

Контактные термометры с термопарами изготавливаются из самых различных металлов и сплавов и по классу точности также бывают различными: от грубых, применяемых в качестве индикаторов температуры до прецизионных, позволяющих создавать точные термометры независимо от наличия или отсутствия средств градуировки. Дело в том, что некоторые виды термопар, например термопара из платины и сплава платины с 10% родия или термопара из платины и сплава платины с 15% родия имеют очень стабильные значения ЭДС, не зависящие от размеров или места их изготовления. Составлены таблицы зависимости ЭДС этих термопар от разности температур спаев. Это дает возможность изготовить термометр высокого класса точности, пользуясь только табличными данными и, естественно, располагая точными электроизмерительными приборами.

ТермосопротивлениеТермосопротивления как средства измерения температуры также привлекательны тем, что позволяют измерять температуру путем измерения электрических характеристик. Термосопротивления являются самыми воспроизводимыми датчиками температуры. Именно по этой причине на эталонном уровне в качестве средств передачи размера единицы температуры или в качестве объекта сличения используются термосопротивления. Так же, как и термопары, изготавливаются термосопротивления различных классов точности - от грубых индикаторов до прецизионных мер в эталонах.

6.3.

Неконтактные термометры

Неконтактные методы измерения температуры оказываются очень полезными в тех случаях, когда либо объект по каким-либо причинам недоступен для установки в него контактного термометра или удален от нас (космические объекты, звезды), либо когда необходимо измерять очень высокие температуры и невозможно создать датчик, выдерживающий их. Кроме того, за последние десятилетия благодаря успехам в создании приемников инфракрасного излучения появилась возможность достаточно точного измерения комнатных температур приемниками инфракрасного излучения - болометрами и тепловизорами. В последних сочетаются методы инфракрасной техники и телевизионных методов визуализации инфракрасных изображений.

В первом параграфе данного раздела указано, что основу неконтактных методов излучения температуры составляют законы излучения Абсолютно черное телоабсолютного черного тела. Измерительные приборы, в которых измеряется интегральное тепловое излучение и для определения температуры используется закон Стефана-Больцмана (6.6) называют Радиометррадиометрами. Схема, поясняющая принцип действия радиометра, показана на рис. 6.9Рис. 06.09. Регистрация температуры радиометром.

В радиометре участок поверхности, температуру которого измеряют, визуализируют на поверхности термочувствительного приемника, преобразующего изменение температуры в электрический сигнал. Градуировка радиометра производится по сигналу от поверхности, температура которой хорошо измерена другими методами. Болометр представляет собой либо чувствительную термопару, либо термосопротивление с сильной зависимостью сопротивления от температуры. Для достижения очень высокой чувствительности терморезистивного болометра его элемент поддерживают при температуре, близкой к температуре сверхпроводимости. Такие сверхпроводящие болометры позволяют добиваться очень высокой точности в малых измерениях температуры.

Недостатком радиометра как средства измерения температуры является очевидный факт, что всю энергию излучения в диапазоне длин волн или частот от нуля до бесконечности собрать невозможно. Каждый радиометр имеет коротковолновую и длинноволновую границы чувствительности. По этой причине температура, измеренная радиометром, будет отличаться от Темперетура термодинамическаятермодинамической температуры, измеряемой контактными термометрами. Существует в термометрии понятие Температура радиационнаярадиационной температуры, которая по закону Стефана-Больцмана равна

<?xml version="1.0" encoding="UTF-16"?>
(6.20)

где σ - постоянная Стефана-Больцмана; ω(λ) - спектральное распределение падающего на радиометр излучения; λ1 и λ2 - коротковолновая и длинноволновая границы чувствительности фотоприемника; φ(λ) - спектральная относительная чувствительность фотоприемника. Температуру объектов, светящихся в видимой области спектра, например, нитей накаливания ламп, пламен, раскаленных предметов и т. п. измеряют Яркометряркомерами или Пирометрпирометрами, т. е. приборов для измерения температуры «огня». Пирометры существуют визуальные и с фотоэлектрической регистрацией. В последнем варианте они чаще измеряют не только температуру, но и яркость. Схема визуального пирометра с исчезающей нитью приведена на рисунке 6.10Рис. 06.10. Пирометр с исчезающей нитью.

В таком пирометре оператор фиксирует визуально момент совпадения яркости изображения измеряемого объема и нити накаливания, встроенной в пирометр. Изменяя реостатом ток через нить накаливания, добиваются выравнивания яркости. Этот момент человеческий глаз фиксирует достаточно точно. Прибор градуируется потоку, проходящему через реостат.

Очевидно, что в пирометре также фиксируется температура, несовпадающая с термодинамической. Во-первых, точное совпадение показаний пирометра с термодинамической температурой имеет место только для абсолютного черного тела. Яркость объекта и распределение энергии по спектру могут не совпадать с кривой, описываемой законом Планка (формула 6.8, рис. 6.2Рис. 06.02. Распределение энергии в спектре излучения абсолютно черного тела (формула 6.8)). По этой причине температуру, измеряемую пирометром с исчезающей нитью, называют яркостной.

Если в приборе, собранном по схеме, изображенной на рис. 6.10Рис. 06.10. Пирометр с исчезающей нитью вместо окуляра установить фотоэлектрический приемник-фотоэлемент, фотодиод или фотоумножитель, - то такое измерительное устройство будет регистрировать световой поток, распределяющийся в определенном телесном угле. Площадь визируемого участка также можно зафиксировать, например, диафрагмой. В этом случае прибор будет измерять силу света объекта с единичной поверхности, то есть яркость. Такие оптические приборы называются Яркометр яркомерами.

Существует еще одно понятие в неконтактной термометрии - понятие Температура цветовая цветовой температуры. Почти все источники света могут характеризоваться длиной волны, на которой наблюдается максимум энергии излучения. Спектральное распределение излучения может не соответствовать формуле Планка (6.8), нов любом случае температуру можно определить, воспользовавшись законом Вина (6.10). Как уже указывалось, так определенная температура получила на практике название цветовой. Особенно часто термином «цветовая температура» пользуются, характеризуя источники света. Если в светотехнике указывается цветовая температура, это означает, что максимум энергии излучения данного источника совпадаете максимумом энергии излучения абсолютно черного тела с такой температурой. В качестве примера приведем значения цветовой температуры для наиболее часто встречающихся источников света (см. табл. 6.1).

Таблица 6.1

Тип источника света Светящийся объект Цветовая температура, К
Источник типа А Лампа накаливания 2850
Источник типа В Прямое солнечное излучение 5460
Источник типа С Рассеянное солнечное излучение 5770
Источник типа D Лампы дневного света - люминесцентные лампы  
D65 6500
D50 5000

 

© Центр дистанционного образования МГУП