Московский государственный университет печати

Козлов М.Г.


         

Метрология и стандартизация

Учебник


Козлов М.Г.
Метрология и стандартизация
Начало
Печатный оригинал
Об электронном издании
Оглавление

Предисловие

Часть I. МЕТРОЛОГИЯ

1.

Введение в метрологию

1.1.

Исторические аспекты метрологии

1.2.

Основные понятия и категории метрологии

1.3.

Принципы построения систем единиц физических величин

1.4.

Воспроизведение и передача размера единиц физических величин. Эталоны и образцовые средства измерения

1.5.

Измерительные приборы и установки

1.6.

Меры в метрологии и измерительной технике. Поверка средств измерений

1.7.

Физические константы и стандартные справочные данные

1.8.

Стандартизация в обеспечении единства измерений. Метрологический словарь

2.

Основы построение систем единиц физических величин

2.1.

Системы единиц физических величин

2.2.

Формулы размерности

2.3.

Основные единицы системы СИ

2.4.

Единица длины системы СИ - метр

2.5.

Единица времени системы СИ - секунда

2.6.

Единица температуры системы СИ - Кельвин

2.7.

Единица силы электрического тока системы СИ - Ампера

2.8.

Реализация основной единицы системы СИ - единицы силы света - канделы

2.9.

Единица массы системы СИ - килограмм

2.10.

Единица количества вещества системы СИ - моль

3.

Оценка погрешностей результатов измерения

3.1.

Введение

3.2.

Систематические погрешности

3.3.

Случайные погрешности измерений

Часть II. ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА

4.

Введение в измерительную технику

5.

Измерения механических величин

5.1.

Линейные измерения

5.2.

Измерения шероховатости

5.3.

Измерения твердости

5.4.

Измерения давления

5.5.

Измерения массы и силы

5.6.

Измерения вязкости

5.7.

Измерение плотности

6.

Измерения температуры

6.1.

Методы измерения температуры

6.2.

Контактные термометры

6.3.

Неконтактные термометры

7.

Электрические и магнитные измерения

7.1.

Измерения электрических величин

7.2.

Принципы, лежащие в основе магнитных измерений

7.3.

Магнитные преобразователи

7.4.

Приборы для измерения параметров магнитных полей

7.5.

Квантовые магнитометрические и гальваномагнитные приборы

7.6.

Индукционные магнитометрические приборы

8.

Оптические измерения

8.1.

Общие положения

8.2.

Фотометрические приборы

8.3.

Спектральные измерительные приборы

8.4.

Фильтровые спектральные приборы

8.5.

Интерференционные спектральные приборы

9.

ФИЗИКО-ХИМИЧЕСКИЕ ИЗМЕРЕНИЯ

9.1.

Особенности измерения состава веществ и материалов

9.2.

Измерения влажности веществ и материалов

9.3.

Анализ состава газовых смесей

9.4.

Измерения состава жидкостей и твердых тел

9.5.

Метрологическое обеспечение физико-химических измерений

Часть III. СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

10.

Организационные и методические основы метрологии и стандартизации

10.1.

Введение

10.2.

Правовые основы метрологии и стандартизации

10.3.

Международные организации по стандартизации и метрологии

10.4.

Структура и функции органов Госстандарта РФ

10.5.

Государственные службы по метрологии и стандартизации РФ

10.6.

Функции метрологических служб предприятий и учреждений, являющихся юридическими лицами

11.

Основные положения государственной службы стандартизации РФ

11.1.

Научная база стандартизации РФ

11.2.

Органы и службы систем стандартизации РФ

11.3.

Характеристика стандартов разных категорий

11.4.

Каталоги и классификаторы продукции как объект стандартизации. Стандартизация услуг

12.

Сертификация измерительной техники

12.1.

Основные цели и задачи сертификации

12.2.

Термины и определения, специфические для cертификации

12.3.

12.3. Системы и схемы сертификации

12.4.

Обязательная и добровольная сертификация

12.5.

Правила и порядок проведения сертификации

12.6.

Аккредитация органов по сертификации

12.7.

Сертификация услуг

Заключение

Приложения

Указатели
12   именной указатель
583   предметный указатель
145   указатель иллюстраций
Рис. 07.01. Классификация электроизмерительных аналоговых приборов Рис. 07.02. Магнитоэлектрический прибор Рис. 07.03. Электромагнитный прибор Рис. 07.04. Электродинамический прибор Рис. 07.05. Электростатический прибор Рис. 06.05. Схема дилатометрического термометра Рис. 07.06. Преобразование аналог-код с начальной дискретизацией Рис. 07.07. Преобразование аналог-код с начальным квантованием Рис. 07.08. Индикаторы цифровых электроизмерительных приборов

С измерениями Величина электрическаяэлектрических величин большинство людей знакомится раньше, чем со всеми другими видами измерений. В самом деле, понятия амперметра, вольтметра, прибора для измерения электрического сопротивления знакомы каждому из школьного курса физики и из практического использования тестера, измеряющего в основном электрические величины. Только в последние десятилетия массовому пользователю доступными стали тестеры, измеряющие температуру, освещенность, влажность и другие характеристики, не имеющие отношения к электричеству.

Вместе с тем электрические и магнитные измерительные устройства встречаются на практике не только как измерители собственно электрических величин - Сила токасилы тока, Напряжениенапряжения, Сопротивлениесопротивления, Емкостьемкости и т. д. Огромное количество электрических и магнитных устройств используется в преобразователях и датчиках в других видах измерений, например в измерениях перемещений, температуры, давления, влажности, в измерениях состава веществ и материалов, в светотехнике и т.д. То же самое относится и к выходным устройствам измерительной техники. Блоки питания, различные преобразователи, блоки памяти, самописцы, блоки сопряжения узлов измерительных приборов - во всех этих узлах измерительной техники преобладающими являются электрические и магнитные элементы.

В данном изложении собственно электрические и магнитные приборы в силу их большого разнообразия рассматривать подробно нет возможности. По этой причине раздел «Электрические измерения» представлен основополагающими сведениями о категориях электроизмерительных приборов, о принципах ихдействия с кратким изложением сущности построения современных приборов с аналого-цифровым преобразованием.

Проводя категорирование электроизмерительных приборов, в первую очередь их надо разделить на два класса - приборы для измерения параметров цепей постоянного тока и приборы для измерения параметров цепей переменного тока. В зависимости от измеряемой физической величины измерительные электрические приборы классифицируются по группам.

Обозначение групп принято буквенное: например, А - амперметры, Б - источники питания, В - вольтметры, Г - генераторы, Е - измерители сопротивления, индуктивности и емкости, С - осциллографы и т. д. Всего электроизмерительные приборы классифицируются по 20 подгруппам.

Электроизмерительные аналоговые шкальные приборы далее можно разделить по принципу действия и по типу индикаторных устройств (рис. 7.1Рис. 07.01. Классификация электроизмерительных аналоговых приборов).

Классификация Прибор электроизмерительный аналоговыйаналоговых электроизмерительных приборов по типу индикаторов сигнала в особенных комментариях не нуждается. Прибор электроизмерительный стрелочныйСтрелоч­ные приборы во всех вариантах в качестве аналогового сигнала имеют угол поворота стрелки индикатора. Прибор преобразует электрическую вели­чину в угол поворота, который собственно и измеряется. Прибор электроизмерительный элестронно-лучевойЭлектронно-лу­чевые приборы достаточно хорошо известны в измерительной практике как выходные каскады Осцилографосциллографов, электронно-оптических преобра­зователей. В последнее время многие электроизмерительные приборы в качестве выходного устройства имеют компьютер с экраном монитора на выходе. Приборы с компьютерным выходом также можно отнести к элект­ронно-лучевым приборам, хотя в большинстве своем такие приборы уже являются не аналоговыми, а цифровыми, поскольку использование ком­пьютера предполагает наличие аналогово-цифрового преобразователя между датчиком и индикаторным устройством.

Электрические газоразрядные индикаторные устройства также, как и светодиодные индикаторы, являются как бы промежуточными между стрелочными аналоговыми приборами и цифровыми. Прежде чем в изме­рительной технике стал и широко использовать цифровой выход после ко­дирования сигнала, аналогичная процедура была реализована в газораз­рядных и светодиодных индикаторах. По сути дела такие индикаторы уже были простейшими аналого-цифровыми преобразователями, поскольку проводили в простой форме квантование сигнала по определенному уров­ню, после чего зажигалась та или иная цифра в газоразрядном индикато­ре или тот или иной светодиод в светодиодной линейке.

Электромеханические приборы разделяются по принципу действия. Наиболее распространенный тип электромагнитного прибора - магнито­электрический. Принцип действия такого устройства показан на рис. 7.2Рис. 07.02. Магнитоэлектрический прибор.

Измеряемый ток протекает по катушке, расположенной между полю­сами постоянного магнита. Аналоговый сигнал такого устройства, угол по­ворота катушки, определяется простым соотношением:

<?xml version="1.0" encoding="UTF-16"?>
(7.1)

где В - магнитная индукция; W - число витков катушки; S - площадь кон­тура катушки; k - жесткость пружины и I - сила тока через катушку. Маг­нитоэлектрические приборы позволяют проводить измерения токов с очень высокой точностью. В оптических приборах такой же принцип использует­ся в поворотных механизмах для точной установки углов в приборах с диф­ракционными решетками.

В электромагнитных приборах магнитное поле создается в катушке, через которую пропускается измеряемый ток. В зависимости от силы тока измеряется сила, втягивающая внутрь катушки постоянный магнит, соединенный с индикаторной стрелой (рис. 7.3Рис. 07.03. Электромагнитный прибор).

В таком приборе угол поворота стрелки пропорционален квадрату силы тока и дается формулой:

<?xml version="1.0" encoding="UTF-16"?>
(7.2)

где L - индуктивность катушки; к - жесткость пружины; I - сила тока через электромагнит. Электромагнитные приборы уступают магнитоэлектрическим в чувствительности, но оказываются предпочтительнее последних в измерении больших токов или в тех случаях когда необходимо работать с прибором, имеющим большое входное сопротивление.

В электродинамических приборах используется взаимодействие двух катушек с током (рис. 7.4Рис. 07.04. Электродинамический прибор).

Зависимость угла поворота подвижной катушки относительно неподвижной дается выражением:

<?xml version="1.0" encoding="UTF-16"?>
(7.3)

где M12 - взаимная индуктивность катушек; k - жесткость пружины; I1, I2 - токи через катушки. Электродинамическим прибором можно измерять токи или мощности. Последние легко организовать, если через одну из катушек будет проходить ток, пропорциональный разности потенциалов в цепи, а через вторую катушку пропустить рабочий ток.

Электростатический прибор отличается от других типов электроизмерительных устройств тем, что имеет очень высокое входное сопротивление, определяемое проводимостью воздуха между пластинами конденсатора. Сам прибор представляет собой конденсатор переменной емкости, у которого одна из пластин сделана подвижной. При подаче на такой прибор разности потенциалов подвижная пластина втягивается внутрь неподвижной (см. рис. 7.5Рис. 07.05. Электростатический прибор).

Угол поворота подвижной пластины определяется равенством

<?xml version="1.0" encoding="UTF-16"?>
(7.4)

где С - емкость конденсатора, k - жесткость пружин, Ux - разность потенциалов.

В тепловом электроизмерительном приборе используется свойство проводников изменять длину при нагревании, вызванном прохождением электрического тока. Схема такого прибора аналогична схеме дилатометрического термометра (рис. 6.5Рис. 06.05. Схема дилатометрического термометра). Разница состоит в том, что шкала электроизмерительного прибора градуируется непосредственно в электрических единицах - амперах, ваттах.

Наряду с аналоговыми приборами в измерении электрических величин широко используются цифровые. Все величины при этом преобразуются в цифровую форму при помощи аналогово-цифровых, интервально-числовых или частотно цифровых преобразователей. Форма представления сигнала о физической величине в виде кода называется цифровой. В этом случае каждому значению отсчета ФВ соответствует кодовая группа в виде комбинации простыхсигналов. Код Код - набор символов и правил их комбинирования для получения кодовой группы. Коды различаются системой счисления: например двоичный, восьмеричный, десятичный и т.д. Чаще всего используется двоичный код в виде двух символов.

Код характеризуется основанием - числом символов, используемых при построении кодовых групп - и разрядностью (значимостью) кода -общим числом символов в кодовой группе. Например, кодирование отсчетов в десятичной системе двоичными кодами может быть осуществлено следующими комбинациями:

Таблица 7.1.

Варианты кодирования величин от 0 до 9 в двоичных кодах

Значение величины Код
1-2-4-2
Код
1-2-4-2*
Код
1-2-4-8
1
2
3
4
5
6
7
8
9
10
1 0 0 0 
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 0
1 1 1 0
0 1 1 1
1 1 1 1
0 0 0   
1 0 0 0
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 1
0 1 1 1
1 1 1 1
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 0
1 1 1 0
0 0 0 1
1 0 0 1
0 0 0 0

Кроме двух крайних форм предоставления сигналов аналоговой и цифровой есть две промежуточные формы. От аналоговой формы к цифровой можно перейти проведя дискретизацию по времени - получиться импульсная форма представления сигнала. Далее нужно провести квантование импульсов по амплитуде (рис. 7.6Рис. 07.06. Преобразование аналог-код с начальной дискретизацией).

Для преобразования аналог-код можно поступить иначе, проведя сначала квантование сигнала по уровню, а потом проведя дискретизацию квантованного сигнала по схеме, изображенной на рис. 7.7Рис. 07.07. Преобразование аналог-код с начальным квантованием.

Прибор электроизмерительный цифровойЦифровые электроизмерительные приборы позволяют считывать сигнал непосредственно в единицах измеряемой величины. В качестве индикаторов применяются самые разнообразные устройства, которые также можно раскатегорировать по типу индикаторов и по принципу индикации (рис. 7.8Рис. 07.08. Индикаторы цифровых электроизмерительных приборов).

Особый класс электроизмерительных приборов представляют собой устройства с компьютером в качестве выходного устройства. На начальном этапе внедрения оргтехники в измерительную технику компьютер использовался в качестве дополнительного блока, т. е. прибор имел индикатор в аналоговом или в цифровом виде, но мог и сопрягаться с компьютером для записи сигналов, обработки информации и представления ее в виде графиков, таблиц, гистограмм и т. п. В современных приборах индикаторы иногда не используются, и компьютер является единственным средствам вывода информации. Такого рода приборы имеют, как правило, первичный преобразователь (датчик), аналого-цифровой преобразователь (АЦП) и компьютер. Поскольку информация в компьютер должна вводиться в виде кода, то такие приборы можно отнести к классу специфических цифровых приборов. Удобства использования компьютерного выхода в измерительных приборах совершенно очевидны: отсутствие необходимости использования самописцев, высокая помехоустойчивость, широкие возможности обработки и представления результатов, возможность передачи полученной информации по каналам связи и многое другое, что позволяет утверждать, что измерительная техника с использованием компьютеров имеет право на специальное рассмотрение.

© Центр дистанционного образования МГУП