Московский государственный университет печати

Козлов М.Г.


         

Метрология и стандартизация

Учебник


Козлов М.Г.
Метрология и стандартизация
Начало
Печатный оригинал
Об электронном издании
Оглавление

Предисловие

Часть I. МЕТРОЛОГИЯ

1.

Введение в метрологию

1.1.

Исторические аспекты метрологии

1.2.

Основные понятия и категории метрологии

1.3.

Принципы построения систем единиц физических величин

1.4.

Воспроизведение и передача размера единиц физических величин. Эталоны и образцовые средства измерения

1.5.

Измерительные приборы и установки

1.6.

Меры в метрологии и измерительной технике. Поверка средств измерений

1.7.

Физические константы и стандартные справочные данные

1.8.

Стандартизация в обеспечении единства измерений. Метрологический словарь

2.

Основы построение систем единиц физических величин

2.1.

Системы единиц физических величин

2.2.

Формулы размерности

2.3.

Основные единицы системы СИ

2.4.

Единица длины системы СИ - метр

2.5.

Единица времени системы СИ - секунда

2.6.

Единица температуры системы СИ - Кельвин

2.7.

Единица силы электрического тока системы СИ - Ампера

2.8.

Реализация основной единицы системы СИ - единицы силы света - канделы

2.9.

Единица массы системы СИ - килограмм

2.10.

Единица количества вещества системы СИ - моль

3.

Оценка погрешностей результатов измерения

3.1.

Введение

3.2.

Систематические погрешности

3.3.

Случайные погрешности измерений

Часть II. ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА

4.

Введение в измерительную технику

5.

Измерения механических величин

5.1.

Линейные измерения

5.2.

Измерения шероховатости

5.3.

Измерения твердости

5.4.

Измерения давления

5.5.

Измерения массы и силы

5.6.

Измерения вязкости

5.7.

Измерение плотности

6.

Измерения температуры

6.1.

Методы измерения температуры

6.2.

Контактные термометры

6.3.

Неконтактные термометры

7.

Электрические и магнитные измерения

7.1.

Измерения электрических величин

7.2.

Принципы, лежащие в основе магнитных измерений

7.3.

Магнитные преобразователи

7.4.

Приборы для измерения параметров магнитных полей

7.5.

Квантовые магнитометрические и гальваномагнитные приборы

7.6.

Индукционные магнитометрические приборы

8.

Оптические измерения

8.1.

Общие положения

8.2.

Фотометрические приборы

8.3.

Спектральные измерительные приборы

8.4.

Фильтровые спектральные приборы

8.5.

Интерференционные спектральные приборы

9.

ФИЗИКО-ХИМИЧЕСКИЕ ИЗМЕРЕНИЯ

9.1.

Особенности измерения состава веществ и материалов

9.2.

Измерения влажности веществ и материалов

9.3.

Анализ состава газовых смесей

9.4.

Измерения состава жидкостей и твердых тел

9.5.

Метрологическое обеспечение физико-химических измерений

Часть III. СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

10.

Организационные и методические основы метрологии и стандартизации

10.1.

Введение

10.2.

Правовые основы метрологии и стандартизации

10.3.

Международные организации по стандартизации и метрологии

10.4.

Структура и функции органов Госстандарта РФ

10.5.

Государственные службы по метрологии и стандартизации РФ

10.6.

Функции метрологических служб предприятий и учреждений, являющихся юридическими лицами

11.

Основные положения государственной службы стандартизации РФ

11.1.

Научная база стандартизации РФ

11.2.

Органы и службы систем стандартизации РФ

11.3.

Характеристика стандартов разных категорий

11.4.

Каталоги и классификаторы продукции как объект стандартизации. Стандартизация услуг

12.

Сертификация измерительной техники

12.1.

Основные цели и задачи сертификации

12.2.

Термины и определения, специфические для cертификации

12.3.

12.3. Системы и схемы сертификации

12.4.

Обязательная и добровольная сертификация

12.5.

Правила и порядок проведения сертификации

12.6.

Аккредитация органов по сертификации

12.7.

Сертификация услуг

Заключение

Приложения

Указатели
12   именной указатель
583   предметный указатель
145   указатель иллюстраций
Рис. 08.12. Дисперсии составляющих дисперсионного фильтра Христиансена. Показатель преломления: 1 - 10% сероуглерод в бензине; 2 - боросиликатное стекло Рис. 08.13. Форма сигналов на выходе приборов Рис. 08.14. К объяснению принципа действия Фурье-спектрометра: З - зеркала; ПЗ - полупрозрачное зеркало; И - источник света; Л - линзы; D - диафрагма; ФП - фотоприемник Рис. 08.13. Форма сигналов на выходе приборов Рис. 08.14. К объяснению принципа действия Фурье-спектрометра Рис. 08.15. Принципиальная схема СИСАМ'а Рис. 08.16. Сигнал СИСАМ'а от монохроматического излучения с длиной волны Лямбда-0 Рис. 08.17. Схема расположения деталей в СИСАМ'е с использованием правого и левого порядков дифракционной решетки Рис. 08.17. Схема расположения деталей в СИСАМ'е с использованием правого и левого порядков дифракционной решетки Рис. 08.17. Схема расположения деталей в СИСАМ'е с использованием правого и левого порядков дифракционной решетки Рис. 08.18. Два типа эталонов Фабри-Перо: а) стеклянная плоскопараллельная пластина с зеркальном покрытием; б) эталон с воздушным промежутком Рис. 08.18. Два типа эталонов Фабри-Перо: а) стеклянная плоскопараллельная пластина с зеркальном покрытием; б) эталон с воздушным промежутком Рис. 08.19. Формирование изображения в эталоне Фабри-Перо Рис. 08.07. К определению критерия Рэлея Рис. 08.20. Сложный эталон (мультиплекс) и его аппаратная функция

В тех случаях, когда Спектрофотометрспектрофотометры предназначаются для регистрации излучения на одной, фиксированной на все время эксплуатации, длине волны или в тех случаях, когда не предъявляется высоких требований к спектральному разрешению Прибор оптический спектральный: Фильтровыйприборов, в качестве элементов, обеспечивающих выделение определенного спектрального диапазона, используются светофильтры.

Светофильтр Светофильтрами, или просто фильтрами, называются оптические элементы, изменяющие спектральный состав излучения, не изменяя формы фронта световой волны, падающей на фильтр. Основная характеристика светофильтра - его пропускание Tλλ/ФФ0, где ФФ0 - падающий на фильтр световой поток и Фλ - прошедший через фильтр поток. Наряду с пропусканием фильтр часто характеризуют его оптической плотностью, определяемой как

<?xml version="1.0" encoding="UTF-16"?>
(8.22)

Фильтры называют нейтральными, или серыми, если их оптическая плотность не зависит от длины волны, т. е. постоянна по всему спектру. Фильтры с широкой полосой пропускания называются широкополосными. Фильтры с узкой полосой называют монохроматическими.

Фильтры, используемые в спектрофотометрах, можно разделить на абсорбционные, отражающие, дисперсионные, интерференционные и интерференционно-поляризационные.

Светофильтр абсорбционныйАбсорбционные фильтры представляют собой твердотельные, жидкостные и газовые среды, поглощающие электромагнитное излучение в определенных областях. Для таких фильтров пропускание зависит от коэффициента поглощения материала фильтра Kλ и от коэффициента отражения света поверхностями фильтра Rλ.

<?xml version="1.0" encoding="UTF-16"?>
(8.23)

где l - толщина поглощающего слоя фильтра. Твердотельные абсорбционные фильтры изготавливают из стекла, из различных кристаллов. Светофильтр жидкостныйЖидкостные и Светофильтр газовыйгазовые фильтры делают в виде кювет, наполняемых растворами или газами, селективно пропускающими свет в той области спектра, в которой должен работать спектральный прибор.

В Светофильтр отражающийотражающих фильтрах используется свойство большинства металлов селективно отражать падающее электромагнитное излучение. Селективные отражающие фильтры могут быть получены нанесением на подложку чередующихся тонких слоев с высоким и низким показателем преломления. Оптическая толщина каждого слоя выбирается равной λ/4. Отраженные от границ раздела слоев пучки света оказываются синфазными, что приводит к значительному повышению коэффициента отражения таких зеркал для определенной длины волны.

Светофильтр дисперсионныйДисперсионные фильтры основаны на дисперсии света - зависимости показателя преломления от длины волны. Одна из конструкций такого типа является кюветой, наполненной порошком из прозрачного материала. В кювету заливается жидкость, подобранная так, чтобы для определенной длины волны показатели преломления жидкости и порошка совпадали. Тогда кювета оптически однородна для лучей этой длины волны, но рассеивает излучение других длин волн. Такие фильтры могут изменять длину волны максимума пропускания. Это достигается изменением показателя преломления жидкости либо добавлением другой компоненты, либо изменением температуры. На рис. 8.12Рис. 08.12. Дисперсии составляющих дисперсионного фильтра Христиансена. Показатель преломления: 1 - 10% сероуглерод в бензине; 2 - боросиликатное стекло приведены показатели преломления 10% раствора сероуглерода в бензине и показатель преломления боросиликатного стекла, которое используется в виде порошка. Такое сочетание компонентов дисперсионного фильтра позволяет выделять видимую область спектра с пропусканием, близким к функции видности человеческого глаза.

Светофильтр интерференционныйИнтерференционные фильтры принципиально схожи с отражательными многослойными фильтрами, т. е. представляют собой набор отражающих и прозрачных покрытий, нанесенных на прозрачную подложку. Фильтр, предназначенный для выделения какой-либо полосы пропускания, должен иметь оптические толщины слоев, кратные целому числу полуволн, т. е.

<?xml version="1.0" encoding="UTF-16"?>

где n - целое число. Очевидно, что изготовив такое покрытие фильтр будет пропускать не только излучение данной длины волны, но и длины волн, кратные ей, т. е. 2λ; 3λ... и λ. Для того чтобы излучения высших порядков не накладывалось на излучение первого порядка, интерференционные слои наносят на какое-либо стекло, поглощающее высшие порядки. Интерференционные фильтры изготавливают работающими как на пропускание, так и на отражение.

Если в фильтре интерференция происходит в поляризованных лучах света, то такие фильтры позволяют выделять очень узкие спектральные интервалы, ширина которых доходит до сотых долей нанометра. Интерференционно - поляризационные фильтры очень удобны в использовании, поскольку позволяет получать высокую степень монохроматизации при большой светосиле прибора. Однако интерференционно - поляризационные фильтры очень сложны в изготовлении и, соответственно, дороги. Тем не менее для ряда специальных задач, когда требуется реализовать в приборе высокое спектральное разрешение с высокой светосилой и при этом обеспечить небольшие габариты и вес прибора, использование интерференционно - поляризационных фильтров оказываются самым предпочтительным способом решения проблемы.

В Прибор оптический спектральный: Дисперсионныйдисперсионных спектральных приборах разложение электромагнитного излучения в спектр по длинам волн или по частотам осуществляется за счет дисперсии показателя преломления в оптическом стекле. В приборах с дифракционными решетками спектр получается за счет дифракции лучей на периодических структурах. Существует еще один метод разложения излучения по длинам волн - интерференция световых пучков. Поскольку положение максимума интерференционной картины зависит от длины волны, возможно создание таких приборов, в которых изменяется разность хода двух световых пучков. В том случае, если излучение монохроматично, при изменении разности хода будет наблюдаться чередование максимумов и минимумов интенсивности на выходном устройстве (см. рис. 8.13, аРис. 08.13. Форма сигналов на выходе приборов).

В Прибор оптический спектральный: Интерференционныйинтерференционных спектральных приборах разложение в спектр по длинам волн не происходит. Регистрируется непосредственно сигнал на выходе, а затем специальные средства обработки сигнала производят разложение зависимости интенсивности в ряд Фурье. Сигнал на выходе интерференционного спектрометра φ(t) связан с искомой функцией распределения энергии по длинам волн I(λ) соотношением:

<?xml version="1.0" encoding="UTF-16"?>
(8.24)

где υ - скорость изменения разности хода в интерференционном спектрометре в направлении осевого луча.

На практике чаще всего используются два принципиально отличных типа интерференционных спектрометров - это Фурье-спектрометры и СИСАМ'ы-спектрометры с селективной амплитудной модуляцией.

Преимущества Фурье-спектрометрФурье-спектрометра перед другими типами спектральных приборов состоит в том, что прибор регистрирует весь световой поток одновременно. Схема расположения узлов Фурье-спектрометра аналогична схеме интерферометра Майкельсона (см. рис. 8.14Рис. 08.14. К объяснению принципа действия Фурье-спектрометра: З - зеркала; ПЗ - полупрозрачное зеркало; И - источник света; Л - линзы; D - диафрагма; ФП - фотоприемник).

Если интерферометр Майкельсона осветить светом сложного спектрального состава, то при перемещении одного из зеркал со скоростью t> будет наблюдаться картина, изображенная на рис. 8.13, вРис. 08.13. Форма сигналов на выходе приборов. Для каждой монохроматической составляющей излучения λ0 интенсивность сигнала на выходе будет изменяться периодически.

<?xml version="1.0" encoding="UTF-16"?>
(8.25)

Частота модуляции <?xml version="1.0" encoding="UTF-16"?>
для разных длин волн различная.

Если на выходе приемника установить узкополосный усилитель, настроенный на частоту υmod, то прибор будет работать как монохрометр, т. е. регистрировать излучение на какой-то определенной длине волны. Если установить ряд узкополосных усилителей, то будет регистрироваться излучение по спектру в ряде точек λ1, λ2.....λn (n - общее число приемников). При этом все сигналы в отличие от дисперсионных приборов регистрируются одновременно. Максимальная разность хода L определяет разрешающую способность Фурье-спектрометра.

<?xml version="1.0" encoding="UTF-16"?>
(8.26)

Если есть необходимость выделить весь спектр источника света, в современных Фурье - спектрометрах используют компьютеры, в которых проводится Фурье-анализ выходного сигнала, зарегистрированного одним приемником излучения. Условием получения результатов высокого качества является равномерность перемещения подвижного зеркала на всей длине L.

Спектрометры с интерференционной селективной модуляцией СИСАМ-спектрометрСИСАМ'ы используют также принцип интерференции двух световых потоков, но в отличие от Фурье-спектрометра СИСАМ работает на одной фиксированной длине волны. Это достигается, например, тем, что в интерферометре Майкельсона, схема которого дана на рис. 8.14Рис. 08.14. К объяснению принципа действия Фурье-спектрометра, зеркала «3» заменяют на дифракционные решетки, повернутые относительно осей падающих пучков на одинаковый угол α. Рис. 8.15Рис. 08.15. Принципиальная схема СИСАМ'а поясняет ситуацию.

Для того чтобы пояснить принцип работы СИСАМ'а, допустим, что одна из решеток движется вдоль осевого луча в интерферометре. В этом случае для Излучение монохроматическоемонохроматического излучения изменение интенсивности будет изменяться периодически аналогично изменению по формуле 8.24 приведенной для Фурье-спектрометра. Отличие выходного сигнала СИСАМ'а от сигнала с Фурье-спектрометра состоит в том, что глубина модуляции по мере изменения разности хода изменяется и максимум соответствует частоте

<?xml version="1.0" encoding="UTF-16"?>
(8.27)

По мере изменения длины волны, регистрируемой СИСАМ'ом и соответствующей точному равенству углов α12, глубина модуляции будет изменяться. По этой причине сигнал на выходе для фиксированной длины волны будет иметь несколько максимумов, убывающих по амплитуде (см. рис. 8.16Рис. 08.16. Сигнал СИСАМ'а от монохроматического излучения с длиной волны Лямбда-0).

Еще один вариант спектрометра с интерференционной селективной модуляцией можно построить основываясь на том, что у дифракционной решетки с симметричной формой штриха наблюдаются максимумы справа и слева от нулевого порядка, когда разность хода Δ=0.

Такие максимумы дают когерентное излучение и дадут контрастную интерференционную картину, если их направлять в одну и ту же точку пространства. На рис. 8.17Рис. 08.17. Схема расположения деталей в СИСАМ'е с использованием правого и левого порядков дифракционной решетки изображена одна из возможных оптических схем такого прибора.

СИСАМ, изображенный на рис. 8.17Рис. 08.17. Схема расположения деталей в СИСАМ'е с использованием правого и левого порядков дифракционной решетки, работает следующим образом. Детали в приборе исходно устанавливаются так, чтобы углы дифракции в правом и левом порядке дифракции в точности совпадали и соответствовали условию максимума отражения дифракционной решеткой

<?xml version="1.0" encoding="UTF-16"?>
(8.28)

где d - постоянная решетки и k - целое число, т. е. порядок максимума отражения дифракционной решетки. Для того чтобы зарегистрировать сигнал от источника на длине волны λ0 одно из зеркал перемещают вдоль луча с частотой модуляции ωmod. При исходной настройке должно быть выполнено условие равенства углов дифракции α12 и условие максимума выходного сигнала d sin α=kλ0, где d - расстояние между штрихами решетки. На выходе прибора в точке расположения фотоприемника при этом будет наблюдаться максимум интенсивности. Если теперь изменять положение зеркала З2 периодически с частотой ω0, то светлое пятно на выходе начнет «моргать», т. е. периодически изменять интенсивность излучения на частоте ωmod. Об интенсивности излучения источника света судят по изменению глубины модуляции.

СИСАМ'ы имеют одно очень существенное преимущество перед другими спектральными приборами - высокое спектральное разрешение для монохроматического излучения, на которое настроен прибор. При этом сигнал может быть выделен на фоне интенсивного излучения с другими длинами волн, т. к. прибор реагирует только на излучение с длиной волны, удовлетворяющей условию d sin α = kλ

Недостатком СИСАМ'а является то, что этот прибор очень сложен в настройке, и при изменении рабочей длины волны оба зеркала нужно перемещать синхронно с очень высокой точностью. Это условие выдвигает очень жесткие требования к настройке прибора и к помехозащищенности. В принципе существуют схемы, автоматически обеспечивающие синхронность перемещения обоих зеркал З1 и З2 (см. рис. 8.17Рис. 08.17. Схема расположения деталей в СИСАМ'е с использованием правого и левого порядков дифракционной решетки) помехозащищенность, к сожалению, до настоящего времени является самым слабым местом СИСАМ'ов.

Для создания приборов высокой разрешающей силы в спектроскопии широко используется прибор, известный как Интерферометр Фабри-Пероинтерферометр Фабри-Перо или эталон Фабри-Перо. Этот прибор является в настоящее время основным в получении высокого спектрального разрешения. Принцип действия эталона Фабри-Перо основан на прохождении света между двумя плоскопараллельными светоделительными поверхностями (см. рис. 8.18Рис. 08.18. Два типа эталонов Фабри-Перо: а) стеклянная плоскопараллельная пластина с зеркальном покрытием; б) эталон с воздушным промежутком).

Эталон может быть выполнен в виде стеклянной плоскопараллельной пластины или в виде двух плоских зеркал, расположенных параллельно с зеркальными покрытиями на внутренних поверхностях (см. рис. 8.18, бРис. 08.18. Два типа эталонов Фабри-Перо: а) стеклянная плоскопараллельная пластина с зеркальном покрытием; б) эталон с воздушным промежутком).

При прохождении пучка света через эталон Фабри-Перо в результате многократных отражений от полупрозрачных поверхностей зеркал образуется ряд параллельных световых пучков. Разность хода между соседними пучками может быть вычислена из геометрических соображений и равна

<?xml version="1.0" encoding="UTF-16"?>
(8.29)

где t - толщина пластины; n - показатель преломления среды в промежутке между зеркалами. Условие максимума интерференции имеет вид

<?xml version="1.0" encoding="UTF-16"?>
(8.30)

где k - целое число. Условие максимума выполняется для всех углов, составляющих угол φ с поверхностью. Поэтому если за эталоном поместить линзу, то в ее фокусе образуется ряд ярких колец, соответствующих условию максимума. Излучения различных длин волн будут наблюдаться под разными углами, образуя систему концентрических колец. Типичная картина интерференции, наблюдаемая в эталоне Фабри-Перо, дана на рис. 8.19Рис. 08.19. Формирование изображения в эталоне Фабри-Перо.

Такая картина типична для любой плоскопараллельной пластины. Только в обычной пластине коэффициент отражения равен 3яю&5% и пучки очень быстро ослабляются при многократном прохождении. В эталоне Фабри-Перо коэффициент отражения близок к единице, поэтому интенсивность каждого последующего пучка мало отличается от интенсивности предыдущего. Результирующий сигнал на выходе формируется как результат многолучевой интерференции при числе интерферирующих пучков от десяти - для коэффициента отражения зеркал 80% - до 150 - для коэффициента отражения 98%.

Опуская детали теории многолучевой интерференции, происходящей в эталоне Фабри-Перо, перечислим основные характеристики и параметры прибора.

Угловая дисперсия - изменение угла расположения интерференционного максимума от длины волны - выражается формулой

<?xml version="1.0" encoding="UTF-16"?>
(8.31)

Из этого равенства следует, что дисперсия всех эталонов независимо от их толщины одинакова. Вблизи нормали дисперсия обращается в бесконечность. Знак минус указывает на то, что с ростом угла наблюдения уменьшается длина волны, для которой имеет место соответствующий максимум.

Из условий наблюдения максимума в эталоне Фабри-Перо (8.30) следует, что для монохроматического излучения будет наблюдаться система интерференционных колец с угловым расстоянием между кольцами с к1 - к2 = 1. Угловое расстояние между соседними кольцами для одной длины волны равно:

<?xml version="1.0" encoding="UTF-16"?>
(8.32)

Это соответствует интервалу длин волн, который располагается между соседними кольцами

<?xml version="1.0" encoding="UTF-16"?>
(8.33)

для малых углов падения. Интервал, определенный по формуле 8.33, называют постоянной эталона. Постоянная эталона - это интервал длин волн, в котором можно наблюдать излучение не опасаясь переналожения порядков. Из выражения для постоянной эталона следует, что разрешаемый эталоном Фабри-Перо спектральный интервал тем меньше, чем больше толщина эталона t.

Пропускание эталона Фабри-Перо в максимуме интенсивности зависит от коэффициента отражения зеркал r и от их коэффициента пропускания τ:

<?xml version="1.0" encoding="UTF-16"?>
(8.34)

В случае отсутствия потерь энергии на поглощение в зеркалах 1 - r = τ и вся энергия, посылаемая источником в направлении максимума, проходит через эталон, т. е. Т = 1.

Разрешающая способность эталона Фабри-Перо при оценке по критерию Рэлея (см. рис. 8.7Рис. 08.07. К определению критерия Рэлея) имеет вид:

<?xml version="1.0" encoding="UTF-16"?>
(8.35)

где dλ - минимальный разрешаемый интервал, Nэфф - эффективное число интерферирующих пучков, которое находится по формуле

<?xml version="1.0" encoding="UTF-16"?>
(8.36)

где r - коэффициент отражения зеркала.

Из оценок, сделанных для спектрального разрешения эталона Фабри-Перо и разрешаемого спектрального интервала - постоянной эталона - следует, что этот прибор является спектральным инструментом высокого разрешения, но реализация этого качества достижима только в пределах постоянной эталона Δλ. По этой причине эталон Фабри-Перо обычно используется вместе с каким-либо другим спектральным прибором, который позволяет провести предварительную монохроматизацию с разрешением меньшим, чем постоянная эталона. В большинстве случаев эталон Фабри-Перо устанавливается после предварительного монохроматора, выделяющего полосу пропускания порядка Δλ. Таким образом удается добиться очень высокого спектрального разрешения, равного 106 и выше. Для реализации такого спектрального разрешения понадобилась бы дифракционная решетка с 1200 штрихов на миллиметр с размером заштрихованной поверхности около одного метра.

Для решения ряда спектрофотометрических задач используют два последовательно установленных эталона Фабри-Перо. Такая система получила название мультиплекса. Один из эталонов обычно имеет малую толщину, второй в несколько раз больше (см. рис. 8.20Рис. 08.20. Сложный эталон (мультиплекс) и его аппаратная функция).

Такая комбинация позволяет получать высокое спектральное разрешение, определяемое эталоном большей толщины, в более широком диапазоне длин волн, определяемом эталоном меньшей толщины.

У эталона Фабри-Перо кроме высокого спектрального разрешения есть еще одно важное преимущество перед дисперсионными спектральными приборами со входными щелями. Это преимущество состоит в высокой светосиле прибора. В самом деле, спектральная щель выделяет только малую часть светового потока от источника, зависящую от ширины щели. Чем большего разрешения по длинам волн мы хотим добиться, тем уже должна быть входная щель. Соответственно в спектральный прибор попадает только часть энергии излучения источника света. В эталоне Фабри-Перо таких ограничений нет, т. е. в формировании выходного сигнала участвует весь световой поток, испускаемый источником света.

© Центр дистанционного образования МГУП