Московский государственный университет печати

Горбачев В.В.


         

Концепции современного естествознания. В 2 ч.

Учебное пособие


Горбачев В.В.
Концепции современного естествознания. В 2 ч.
Начало
Печатный оригинал
Об электронном издании
Оглавление
1.

Часть I

Предисловие

1.1.

Введение

1.1.1.

Этапы развития и становления естествознания

1.1.2.

Общие проблемы естествознания на пути познания Мира

1.2.

Механика дискретных объектов

1.3.

Физика полей

1.4.

Теория относительности Эйнштейна - мост между механикой и электромагнетизмом

1.4.1.

Физические начала специальной теории относительности

1.4.2.

Общая теория относительности

1.5.

Основы квантовой механики и квантовой электродинамики

1.6.

Физика Вселенной

1.6.1.

Модели происхождения Вселенной

1.6.2.

Современные модели элементарных частиц как первоосновы строения материи Вселенной

1.6.3.

Фундаментальные взаимодействия и их мировые константы

1.6.4.

Модель единого физического поля и многомерность пространства-времени

1.6.5.

Устойчивость Вселенной и антропный принцип

1.6.6.

Ньютоновская модель развития Вселенной

1.6.7.

Антивещество во Вселенной и антигалактики

1.6.8.

Механизм образования и эволюции звезд

1.7.

Проблема «порядок-беспорядок» в природе и обществе

1.8.

Симметрия и асимметрия в их различных физических проявлениях

1.9.

Современная естественнонаучная картина мира с точки зрения физики

2.

Часть II. Физика живого

Введение

2.1.

От физики существующего к физике возникающего

2.1.1.

Термодинамические особенности живых систем

2.1.2.

Энергетический подход к описанию живого

2.1.3.

Уровни организации живых систем и системный подход к эволюции живого

2.1.4.

Физическая интерпретация биологических законов

2.1.5.

Пространство и время для живых организмов

2.1.6.

Энтропия и информация в живых системах

2.2.

Физические аспекты и принципы

2.2.1.

От атомов к протожизни

2.2.2.

Химические процессы и молекулярная самоорганизация

2.2.3.

Биохимические составляющие живого вещества

2.2.4.

Клетка как «элементарная частица» молекулярной биологии

2.2.5.

Роль асимметрии в возникновении живого

2.3.

Физические принципы воспроизводства и развития живых систем

2.3.1.

Информационные молекулы наследственности

2.3.2.

Воспроизводство и наследование признаков

2.3.3.

Процессы мутагенеза и передача наследственной информации

2.3.4.

Матричный принцип синтеза информационных макромолекул и молекулярная генетика

2.4.

Физическое понимание эволюционного и индивидуального развития организмов

2.4.1.

Онтогенез и филогенез. Онтогенетический и популяционный уровни организации жизни

2.4.2.

Физическое представление эволюции. Синтетическая теория эволюции

2.4.3.

Аксиомы биологии

2.4.4.

Признаки живого и определения жизни

2.4.5.

Физическая модель демографического развития С.П. Капицы

2.5.

Физические и информационные поля биологических структур

2.5.1.

Физические поля и излучения функционирующего организма человека

2.5.2.

Механизм взаимодействия излучений человека и окружающей среды и возможности медицинской диагностики и лечения

2.5.3.

Устройство памяти. Воспроизводство и передача информации в организме

2.6.

Физические аспекты биосферы и основы экологии

2.6.1.

Структурная организованность биосферы

2.6.2.

Биогеохимические принципы В.И. Вернадского и живое вещество

2.6.3.

Физические аспекты эволюции биосферы и переход к ноосфере

2.6.4.

Физические факторы влияния Космоса на земные процессы

2.6.5.

Физические основы экологии

2.6.6.

Принципы устойчивого развития

Контрольные вопросы

Литература

Темы курсовых работ, рефератов и докладов

Вопросы к зачету и экзамену

Словарь терминов

Указатели
690   именной указатель
3016   предметный указатель
58   указатель иллюстраций
Рис. 1.6.1. Схема физической истории Вселенной. Рис. 1.6.2. Возможные формы стабильной материи во Вселенной. Рис. 1.6.3. Модель трехмерного частотного пространства. Рис. 1.6.4. Схематическое изображение областей, соответствующих устойчивым областям Вселенной. Рис. 1.6.5. Масштабы Вселенной Рис. 1.6.6. Масштабы микромира Рис. 1.6.7. Схематическое изображение протон-протонной цепочки Рис. 1.6.8. Главная последовательность звезд населения I, к которым относится солнце, m[c] - масса солнца Рис. 1.6.9. Диаграмма эволюции звезд населения I. Рис. 1.6.10. Модель пульсара, предложенная Голдом.

Самое удивительное в природе
это - то, что мы можем ее понять.

А. Эйнштейн

Чем постижимей становится
Вселенная, тем она кажется
бессмысленней.

С. Вайнберг

Человек с давних пор интересовался устройством Вселенной. Звезды притягивали к себе наших предков, заставляли смотреть на них с удивлением и трепетом. Физика добилась больших успехов в изучении макроскопических и микроскопических свойств природы, однако, понимание и объяснение свойств Вселенной в целом происходило не так уверенно. Извечные вопросы, которые всегда волновали человечество, во многом не разрешены до сих пор. Как возникли звезды, планеты, вся Вселенная? Как развивалась эта Вселенная в прошлом, куда движется в настоящем и что ее ждет в будущем? На некоторые вопросы мы может ответить сейчас, другие ждут своего ответа. Но каждый шаг вперед ставит также и новые вопросы, раздвигая области неведомого. Сколько вещества во Вселенной? Существуют ли во Вселенной другие виды материи? Неизвестна природа странных объектов, излучающих фантастическое количество энергии из дальнего КосмосКосмоса. И так далее...

Тем не менее, к настоящему времени сложились определенные научные представления о происхождении и эволюции Вселенной. Следует сразу отметить, что одним из основных затруднений при изучении астрономических и космологических событий является то, что над изучаемым объектом нельзя провести контрольного эксперимента. Мы можем наблюдать лишь естественный ход событий. Поэтому, можно сказать, поразительным является не безграничное разнообразие наблюдаемых астрономических событий, а возможность, анализируя эти явления, делать выводы относительно эволюции звезд и галактик на протяжении миллиардов лет.

Остановимся на физических основаниях Космологиякосмологии и Астрофизикаастрофизики. Предметом космологии является изучение строения, происхождения и эволюции Вселенной как целого. Поэтому космология связана с общей теорией относительности (ОТО), поскольку во Вселенной приходится иметь дело с большими расстояниями, высокими скоростями и огромными массами.

Первая современная космологическая теория была предложена Эйнштейном в 1917 г. в качестве следствия его формулировки ОТО. Эйнштейн показал, что ОТО однозначно объясняет возможность существования статической вселенной, которая не изменяется со временем. Как мы сейчас понимаем, этого не может быть, но в то время казалось, что это важный успех ОТО. Этот парадокс, по-видимому, был связан с тем, что еще из представлений ученых древней Греции и Египта утвердилось мнение о незыблемости, стационарности Вселенной, и модель Эйнштейн А.Эйнштейна как будто подтвердила это. Однако уже в 1922 г. наш соотечественник Фридман А.А.А. Фридман показал, что из самих уравнений общей теории относительности следует нестационарность, т.е. развитие Вселенной Он утверждал, что искривленное пространство не должно быть стационарным, оно должно или расширяться, или сжиматься. И Эйнштейн вынужден был публично согласиться с выводами Фридмана. К сожалению, работы Фридмана, в частности его книга «Мир как пространство и время», были подвергнуты умолчанию вплоть до настоящего времени. Его работы не переиздавались и не пропагандировались, а автором теории расширяющейся Вселенной объявляется аббат Леметр Ж.Ж. Леметр, президент Папской академии наук в Ватикане. В значительной мере это связано с идеологической кампанией против «физического идеализма», развернутой в СССР в 30-50-е годы [ссылка на источники литературы]. Стационарная, бесконечная в пространстве и времени Вселенная фигурировала и в философии Кант Э.Канта, Гегель Г.В.Ф.Гегеля и Энгельс Ф.Энгельса и была «узаконена» Марксистско-Ленинской философией. Все другие представления были объявлены ошибочными и лженаучными, в том числе и сама теория относительности А. Эйнштейна.

И действительно через какое-то время была создана теория расширяющейся Вселенной, причем она была подтверждена экспериментально. Из телескопических наблюдений звезд было установлено, что кроме нашей Галактики, звездного скопления в виде Млечного пути, существует огромное количество других галактик. Как мы уже указывали в главе 1.4 по красному смещению, точнее смещению световых лучей к красному концу видимого спектра, можно определить движение объекта относительно наблюдателя. В более общем виде - это так называемый Эффект Доплераэффект Доплера при распространении волны любой природы и движении источника этой волны относительно наблюдателя. Например, звуковой сигнал движущегося поезда относительно неподвижного наблюдателя на платформе будет выше, когда поезд приближается к нему, и ниже, когда удаляется. Так вот, экспериментально наблюдались и измерялись радиальные движения (от нас или к нам) отдельных звезд, а затем и галактик методом эффекта Доплер К.Доплера. Было установлено, что если звезда движется к нам, то спектральные линии смещаются к фиолетовому концу спектра, если от нас - то к красному концу.

При Анализанализе изучения далекий галактик получился удивительный результат: у всех галактик наблюдается красное смещение! Поэтому можно считать, что они удаляются от нас. Причем величина этого красного смещения и, следовательно, скорость разбегания галактик больше для более удаленных галактик (что само по себе чрезвычайно удивительно и до сих пор причина этого не выяснена):

S = Hr (1.6.1)

где S - лучевая скорость, r - расстояние до объекта, Н - постоянная Хаббла, равная ~(3 - 5)×10-18c-1 и названная так в честь Хаббл Э.Э. Хаббла, который в 1929 г. экспериментально подтвердил расширение Вселенной. Из Н можно определить возраст Вселенной (t ~ 1/H), который оценивается 10-20 миллиардов лет. В 1997 г. появились данные измерений расстояния до галактики Н100 в созвездии Девы, что Н больше, чем предполагалось, и тогда возраст вселенной составит 8 миллиардов лет. Кстати по данным радиоактивного распада некоторых веществ возраст Земли определяется в 5 миллиардов лет.

Если все галактики удаляются от нас, то возникает вопрос: не занимаем ли мы особого положения во Вселенной? Простой физический опыт не дает оснований полагать, что это так. Предположим, что мы надуваем воздушный шарик, на поверхности которого равномерно нанесены пятнышки. По мере того как шарик будет раздуваться, наблюдателю, находящемуся на одном из пятнышек, будет казаться, что все другие пятнышки удаляются от него. Более того. ему будет казаться, что более далекие пятнышки удаляются значительно быстрее, чем те которые расположены близко. Такие же результаты получаются, естественно, при наблюдении из любого другого пятнышка. Таким образом, при однородном расширении будут увеличиваться все расстояния между пятнышками. Поэтому изменение красного смещения обычно трактуется как очевидное доказательство, что Вселенная расширяется. Так как расширение, по-видимому, происходит равномерно во все стороны, то «центра» Вселенной явно выделить нельзя. Естественно остается много вопросов: почему Вселенная расширяется, будет ли она расширяться дальше или сожмется? Конечна она или бесконечна? Как образуются галактики, из чего состоят? И т.д.

Не останавливаясь подробно здесь на других ранних моделях, напомню все же, что в историческом аспекте первыми моделями Вселенной были модели Солнечной системы, в центре которой была неподвижная Земля, неподвижная сфера со звездами и подвижные 5 планет, Солнце и Луна. Затем Самосский АристархАристарх Самосский в III веке до нашей эры предложил гелиоцентрическую систему, возрожденную польским священником Коперник Н.Коперником в 1514 г. Сюда же можно отнести и античную систему ПтоломейПтоломея, согласно которой за последней сферой располагались ад и рай. Кстати, «модернизацией» этой модели занимались и Кеплер И.Кеплер (эллиптические орбиты вместо круговых) и Галилей Г.Галилей. Все это продолжалось до появления законов Ньютона в небесной механике в XVIII веке. Уже в это время (а идеи Бруно Дж.Джордано Бруно еще ранее - XVI век) возникли представления о бесконечной Вселенной. В XIX веке они развились в представления ПлатонПлатона о бесконечной в пространстве, но неизменной во времени Вселенной. Это была стационарная космологическая модель, которая по сути близка статической Вселенной Эйнштейн А.Эйнштейна.

Предполагалось, что Пространствопространство - абсолютно, однородно и изотропно, а Времявремя - абсолютно и однородно, т.е. использовались строительные материалы классической механики и евклидовой геометрии. Это, кстати, устраивало Теологиятеологический подход к пониманию мира: система мира без начала и конца, как в пространственном так и во временном понимании. Бог создал и все! Кстати, с материалистической точки зрения можно предположить, что БогБог в Теологиятеологии - это и есть пространство и время в физике. Получалось, что мир в целом не эволюционирует. Пространство и время представлялись как жесткий каркас (они же абсолютные!) и не участвовали в процессах, т.е. рассматривались как параметры. Выражаясь на гуманитарном языке, можно сказать - оставались «равнодушными» на такой сцене жизни. Заметим при этом, что если неизменность пространства и времени вызывала некоторый дискомфорт, то бесконечность мира частично это неудобство сглаживала. Можно даже сказать, что стационарная модель мира выполняла согласно [ссылка на источники литературы] как бы роль стыковочного узла между культурами Запада (рационализм) и Востока (мистицизм). Как мы уже знаем, в СТО и ОТО Эйнштейн предположил, что пространство и время не абсолютны, а относительны и связаны между собой, причем скорость передачи взаимодействия конечна и равна скорости света с. Было показано, что геометрия пространства и времени не является евклидовой и определяется наличием материи в данной области. Пространство и время приобретают динамические свойства, им приписывается кривизна, которая влияет на характер движения тел в данной области и которая сама зависит от наличия и движения тел. Пространство и время - уже не «равнодушная» сцена событий, а активные участники, влияющие на события, регулирующие их.

В настоящее время существует много космологических теорий, и нельзя, естественно, сказать, что уже установлена истина в последней инстанции, учитывая еще указанную сложность астрофизических и космологических экспериментов. Однако одна из современных таких теорий - Теория Большого Взрыватеория Большого взрыва (Big Bang) - смогла к настоящему времени объяснить почти все факты, связанные с Космологиякосмологией.

В основе этой теории лежит предположение, что физическая Вселенная образовалась в результате гигантского взрыва примерно 10 миллиардов лет тому назад, когда все вещество и вся энергия современной Вселенной были сконцентрированы в одном сгустке с плотностью свыше 1025 г/см3 и температурой свыше 1016К. Такое представление соответствует модели горячей Вселенной. Модель Большого Взрыва (БВ) была предложена в 1948 г. нашим соотечественником Г. Гамовым. В свое время Гамов Г.А.Г. Гамов, блестящий теоретик (учился в ЛГУ вместе с Ландау Л.Д.Л. Ландау, Козырев Н.А.Н. Козыревым), до войны был самым молодым членом-корреспондентом АН СССР, затем эмигрировал на Запад и по сему поводу, естественно, до последнего времени [ссылка на источники литературы] замалчивался советской официальной наукой. В то же время ему принадлежат по крайней мере три научных результата «нобелевского ранга»: модель БВ, предсказание температуры реликтового излучения и Генетический кодгенетического кода ДНК. Кроме того он был отличным популяризатором науки и опубликовал более 20 прекрасных научных книг.

В то же время неизвестно достоверно - как этот сгусток образовался. Из чего? И откуда взялось такое гигантское количество изначальной энергии? Тем не менее, огромное радиационное давление внутри этого сгустка привело к необычайно быстрому его расширению - Большому Взрыву. Составные части этого сгустка, разлетевшиеся с максимальными относительными скоростями, теперь образуют далекие галактики, очень быстро удаляющиеся от нас. Мы наблюдаем их сейчас такими, какие они были примерно 2 ×109 лет тому назад. Таким образом, расширение Вселенной оказывается естественным следствием теории Большого Взрыва (ТБВ). Заметим здесь, что открытие расширяющейся Вселенной и принятие научным сообществом этого факта можно считать огромным мировоззренческим прорывом в интеллектуальном мире.

Гамов также предположил, что все элементы Вселенной образовались в результате ядерных реакций в первые моменты после БВ. Дальнейшие уточнения этой теории показали, что ядерные реакции действительно имели место, но в результате их могло быть образование лишь гелия. Спектр гелия наблюдался в солнечном излучении до того, как он был обнаружен на Земле, отсюда и название этого элемента от греческого Гелиос - Солнце. Современные методы анализа излучения звезд и галактик показали, что почти все они состоят из водорода - (~60%) и гелия (~20%). Лишь малая часть водорода и гелия содержится в звездах, остальное количество распределено в межзвездном пространстве. В звездах, где температура исключительно велика, атомы полностью ионизированы и составляют высокотемпературную Плазмаплазму. В межзвездном пространстве водород и гелий находятся в основном в атомарном состоянии. Таким образом теория БВ согласуется с наблюдаемой распространенностью гелия во Вселенной.

Рассмотрим варианты объяснения образования сгустка. Предполагается, что эти межзвездные атомы водорода и гелия служат сырьем для образования новых звезд. Заметим, что распределение газа в межзвездном пространстве неоднородно. Средняя концентрация вещества в нашей Галактике ~ 1 атом/см3, однако имеются сильные флуктуации. Эти Флуктуацияфлуктуации плотности объясняются хаотическим движением атомов в пространстве. Случайно плотность вещества в определенной области может существенно превысить среднюю. При этом предполагается, что если количество вещества превысит в какой-либо области критическое значение, порядка 1000 солнечных масс, то в этой области возникают достаточно сильные гравитационные поля, способные противостоять разлету газового облака и стремящиеся сжать его до возможно меньших размеров. Тогда возникает гипотеза: образование из межзвездной пыли сгустка, гигантское уплотнение и взрыв.

Наиболее важным подтверждением теории БВ является обнаружение реликтового излучения (РИ), как раз и связанного, по-видимому, с существованием первоначального сверхплотного сгустка вещества и излучения. Название «реликтовое излучение» ввел наш астрофизик Шкловский И.С.И. Шкловский. Первоначально это излучение представляло собой лучи, которые обладали огромной энергией, но расширение и охлаждение сгустка привели к тому, что излучение также «остыло» и энергия фотонов уменьшилась, т.е. возросла длина их волны. Это излучение и сейчас существует во Вселенной, но теперь уже в виде радиоволн, микроволнового и инфракрасного излучения. Гамов Г.А.Г. Гамов как раз и рассчитал температуру реликтового излучения. По расчетам она составляет 3К, согласно современным данным 2,7 К.

Рассматривая такой сгусток вещества и излучения, мы должны понимать, что его нельзя рассматривать как бы со стороны, с далекого расстояния, и считать, что он расширяется по направлению к нам (или от нас). Сгусток есть ни что иное как сама Вселенная, и Земля находится внутри нее. Внутри же сгустка при расширении его все остальное вещество во Вселенной движется в направлении от Земли (вспомним шарик с пятнышками), или от любого куска вещества в сгустке. Поэтому излучение сгустка бомбардирует Землю со всех сторон. Любой наблюдатель во Вселенной должен регистрировать это излучение с равной интенсивностью с любого направления в пространстве.

Так как расширение продолжается ~1010 лет, то огромная начальная температура уменьшилась согласно теории, к настоящему времени до средней температуры Вселенной порядка 3 К. Максимум в распределении длин волн, соответствующий излучению источника с такой температурой в 3К, должен приходиться на длину волны 0,1 см. Это означает, что если теория БВ верна, то должны экспериментально наблюдаться два эффекта: спектр излучения Вселенной должен соответствовать равновесному излучению при 3К и это излучение должно приходить с равной интенсивностью с любого направления в пространстве, т.е. быть изотропным. Начиная с 1965 г. проводились многочисленные измерения, обнаружившие космические радиоволны с малой энергией, которые можно интерпретировать как равновесное излучение остывшего, но все еще расширяющегося сгустка, причем с длиной волны, соответствующей Т = 3К. Таким образом, получены некоторые экспериментальные доказательства справедливости теории БВ.

Если считать, что эксперименты подтверждают нынешнее расширение Вселенной, то будет ли она продолжать расширяться и дальше? ОТО предполагает следующий ответ на этот вопрос. Считается, что существует некая критическая масса Вселенной. Если действительная масса Вселенной меньше критической, гравитационного притяжения вещества во Вселенной будет недостаточно, чтобы остановить это расширение, и оно будет идти и дальше. Если же действительная реальная масса больше критической, то гравитационное притяжение в конце концов замедлит расширение, приостановит его и затем приведет к сжатию. В этом случае Вселенную ожидает коллапс, в результате которого вновь образуется сгусток. Тем самым готовы условия для нового Большого взрыва и последующего потом расширения. Следовательно, Вселенная может пульсировать между состояниями максимального расширения и коллапса. Это и есть модель пульсирующей Вселенной.

Что дают эксперименты? Они, конечно, очень не простые, скорее оценочные, так как кроме определения массы Вселенной в виде вещества и энергии в звездах, галактической пыли и газе необходимо учитывать вещество и в межгалактическом пространстве. А вот с этим как раз большая неопределенность. Прямые эксперименты затруднены тем, что межгалактический водород почти полностью ионизирован излучением галактик и квазизвездных объектов (квазаров). Поэтому для регистрации ионизированного водорода необходимы рентгеновские методы измерения и вне пределов атмосферы Земли, чтобы избежать поглощения. Как показывают измерения с помощью ракет и спутников, а также предварительные расчеты, полная масса Вселенной с учетом межгалактического вещества значительно превышает критическую. Это означает, что модель пульсирующей Вселенной как будто подтверждается. Получается, что мы живем в такой вселенной, которая взрывается, расширяется и снова сжимается примерно каждые 80 миллиардов лет.

Рассмотрим, каким предполагается поведение горячей Вселенной, расширяющейся после своих родов во время Большого Взрыва. Известный наш теоретик, занимавшийся в том числе и астрофизикой, Зельдович Я.Б.Я.Б. Зельдович заметил, что теория БВ в настоящий момент не имеет сколько-нибудь заметных недостатков. Она столь же надежно установлена и верна, сколь верно то, что Земля вращается вокруг Солнца. Обе теории занимали центральное место в картине мироздания своего времени и обе они имели много противников, утверждавших, что новые идеи, изложенные в них, абсурдны и противоречат здравому смыслу. Однако вспомним определение Эйнштейном здравого смысла!

Успех модели расширяющейся Вселенной связан не только с экспериментальными подтверждениями, о которых мы говорили ранее, но и с тем, что, как оказалось, физикой микромира, в том числе физикой элементарных частиц, можно непротиворечиво объяснить поведение «ранней» Вселенной, причем, как это не парадоксально звучит, буквально по долям микросекунд (и даже более того, отсчет идет от 10-43 с). Поэтому в этом разделе рассмотрим кратко и имеющиеся представления о физике элементарных частиц. Вообще же, по существу сейчас возникла новая наука - Космомикрофизикакосмомикрофизика. В космомикрофизике объединяются не только космологические модели Большого Взрыва, расширяющейся и пульсирующей Вселенной, а также и строение материи в виде элементарных частиц и понятия устойчивости-неустойчивости материи, ее симметрии-асимметрии, Самоорганизациясамоорганизации и эволюции. Модель горячей Вселенной описывает ее как «котел кипящих элементарных частиц».

Каков же сценарий, как любят говорить космологи, развития событий по модели БВ и горячей Вселенной? Сразу после БВ Вселенная представляла собой огненный шар из элементарных частиц и фотонов (свет) огромных энергий со взаимными превращениями. Дальше Вселенная стала расширяться с уменьшением плотности и температуры. При предполагаемых громадных плотностях (~1025 г/см3) и температурах (~1016К) вещество состоит только из элементарных частиц - Протонпротонов и Нейтроннейтронов. Частицы движутся так быстро, что при столкновениях образуются парами новые частицы (частица-Античастицыантичастица). Вообще говоря, чем выше температура Вселенной, тем более тяжелые частицы могут рождаться при столкновениях. В этой модели поведения Вселенной можно установить взаимосвязь между плотностью, температурой и временем жизни вселенной:

<?xml version="1.0" encoding="UTF-16"?>
, (1.6.2)

где r - среднее значение плотности материи во Вселенной в момент времени t (с) от начала расширения;

<?xml version="1.0" encoding="UTF-16"?>
. (1.6.3)

Предполагается, что качественный состав элементарных частиц, образующих новую Вселенную меняется при ее расширении. Когда Вселенной «исполнилось» 10-43 с, все фундаментальные взаимодействия в природе были объединены и имели одинаковую интенсивность. Через 10-23 с наступило время тяжелых частиц, точнее того, из чего они состоят, - кварков. В это время вся Вселенная состояла из кварков и антикварков. По мере уменьшения температуры и с ростом времени уменьшалось число пар этих тяжелых частиц и за счет Аннигиляцияаннигиляции они быстро исчезали. Далее еще через 10-2 с после БВ наступает время легких частиц. Вселенная как бы «омолодилась» и практически состояла из легких частиц - Лептонылептонов и излучения (Фотонфотонов). Еще дальше во времени (~1 - 20 c) Вселенная, расширяясь дальше, теряет и эти частицы. При аннигиляции они превращаются в фотоны. Фотонам же не хватает энергии, чтобы образовать электрон-позитронную пару, и поэтому излучение преобладает над частицами.

Через ~100 с жизни Вселенной ее температура упала до 109 К и скорости оставшихся протонов уменьшились настолько, что за счет ядерных сил притяжения они начинают соединяться в ядра легких элементов, в основном гелия, затем лития и бериллия. По прошествии нескольких часов после ВВ образование этих ядер закончилось. Этот период эволюции называется временем нуклеосинтеза. А дальше счет пошел уже на миллионы лет. Вселенная продолжала расширяться и охлаждаться. При этом энергии фотонов были значительно больше сил связи электронов и ядер, и поэтому атомы пока не могли образоваться. Затем при уменьшении температуры до 3000 К энергия электромагнитного притяжения ядра и электрона становится больше энергии фотонов и тогда начинают образовываться атомы водорода и гелия. Фотоны перестали взаимодействовать с веществом, как говорят космологи, Вселенная стала прозрачной. Предполагается, что с тех дальних времен до наших дней эти фотоны (это излучение) заполняют нашу Вселенную. За это время температура упала с 3000 К до 3 К в наше время. Это и есть реликтовое излучение, о котором мы уже говорили. Таким образом РИ несет нам информацию о молодой Вселенной, когда ей исполнилось «всего» 1 миллион лет. Теперь в рамках модели расширяющейся Вселенной можно построить схему физической истории Вселенной (рис. Рис. 1.6.1. Схема физической истории Вселенной.).

В начальный период времени прозрачная Вселенная была однородным «бульоном» из элементарных частиц, ядер, атомов и фотонов. Затем флуктуационно возникали области, где плотность материи несколько выше. Это, в свою очередь, привело к увеличению гравитационного притяжения в этих областях, а значит к отставанию этих областей от общего темпа расширения Вселенной. Атомы и частицы в этих областях испытывали большое число столкновений (объем-то уменьшился!), газ разогревался, шли термоядерные реакции. Давление внутри области возрастало, область перестала сжиматься.

Заметим, что хотя теория или модель БВ в целом оправдывает доверие научного мира, но все же некоторые вещи она объяснить не может. Так, она не может объяснить конкретную причину БВ, причину «первотолчка». Кроме того, почему мощность взрыва была именно такой, какой была, не больше и не меньше. И скорость разлета, и плотность вещества очень близки к критическим значением. Теория не может также объяснить причину крупномасштабной однородности Вселенной, но одновременно в меньших масштабах допускает наличие в прошлом отклонений от однородности, которые и привели впоследствии к возникновению галактик. При этом предполагается, что расширение происходит с большой степенью однородности и изотропности, а удаленные друг от друга неоднородности причинно между собой не связаны.

Частично эти вопросы снимает еще одна современная модель - сценарий раздувающейся Вселенной (РВ). Это модель хаотического раздувания в период времени от 10-43 до 10-32 с, и связана она с понятием Вакуумвакуума. Согласно этим идеям, Вселенная начала свою жизнь из состояния вакуума, лишенного вещества и излучения. Заметим, что проблема вакуума сейчас становится одной из центральных в физике.

По современным представлениям вакуум - особый тип физической реальности, наиболее фундаментальное состояние материи, особое «ничто», скрытое бытие, содержащее в потенции всевозможные частицы и при сообщении энергии этому вакууму из него можно извлечь любые частицы и объекты, в том числе не только нашу Вселенную, но и другие вселенные. В этой модели предполагается, что Вселенная родилась 15-18 миллиардов лет тому назад из вакуума путем Спонтанныйспонтанного (самопроизвольного) нарушения его симметрии. Получается, что Вселенная как бы самозародилась. Конечно, это выглядит несколько парадоксально: чем не Божественное сотворение Мира?

Вот что говорил по этому поводу упомянутый уже нами Зельдович Я.Б.Я.Б. Зельдович: «Понятие классической космологической сингулярности должно быть существенным образом заменено квантово-гравитационным процессом, описывающим рождение нашего мира. Предполагается, что в начальном состоянии не было ничего, кроме вакуумных колебаний всех физических полей, включая гравитационное. Поскольку понятия пространства и времени являются существенно классическими, то в начальном состоянии не было реальных частиц, реального метрического пространства и времени. Считаем, что в результате квантовой флуктуации и образовалась трехмерная геометрия... Кроме того, на этой стадии из вакуумных флуктуаций негравитационных полей рождаются флуктуации плотности вещества, которые значительно позже, в близкую нам эпоху, приводят к образованию скоплений галактик, нашей Галактики, звезд и в конечном итоге планет и самой жизни».

Стоит также отметить, что модель раздувающейся Вселенной еще раз обращает нас к глобальной мировоззренческой проблеме - проблеме множественности миров. В частности, один из создателей модели РВ Линде А.Д.А.Д. Линде отмечает: «Привычный взгляд на Вселенную как на нечто в целом однородное и изотропное сменяется представлением о Вселенной островного типа, состоящей из многих локально-однородных и изотропных минивселенных, в каждой из которых свойства элементарных частиц, величина энергии вакуума и даже размерность пространства могут быть различны».

В этом смысле можно уже по-другому взглянуть на проблему жизни «разумных» существ в других галактиках. Из вышесказанного следует, что другие галактики могут иметь совершенно другие свойства и взаимодействовать (говорить) на совершенно других языках без принципиальной возможности перевода. И дело здесь, как правильно отмечает Ровкин В.И.Ровкин [ссылка на источники литературы], не в изменении нашего мышления для понимания другой Вселенной, а в изменении структуры, пространственной ориентировки, размерности материального мира, носителя мышления, т.е. нас самих, и все это без представления, как это сделать! Можно отметить, что может быть поэтому свернута программа СЕТI поиска связи с другими «разумными» Цивилизацияцивилизациями. Нужны иные принципиальные подходы, до которых человечество на Земле, видимо, не доросло.

Рассмотрим теперь, из чего же состоит вещество Вселенной, из чего состоит тот сгусток, который и привел к Большому Взрыву? В Космомикрофизикакосмомикрофизике материя Вселенной представляется состоящей из элементарных частиц, как наименьших структурных единиц вещества. Развивая далее атомистическую модель ДемокритДемокрита о том, что весь мир состоит из атомов, на современном уровне мы уже должны говорить, что он состоит из взаимодействующих элементарных частиц. Как уже отмечалось, во времена АристотельАристотеля предполагались четыре основные Субстанциясубстанции - земля, воздух, огонь и вода. Все сущее состояло из этих своего рода «элементарных частиц». В дальнейшем к началу 30-х годов нашего столетия наука смогла дать более приемлемое научное описание строения вещества на основе четырех видов элементарных частиц: Протонпротонов, Нейтроннейтронов, Электронэлектронов и Фотонфотонов. Используя эти устойчивые и стабильные образования, а также и законы квантовой механики, удалось объяснить природу химических элементов, их классификацию (таблица Менделеев Д.И.Менделеева), образование различных соединений и испускаемых ими излучений. Добавление к ним пятой частицы Нейтринонейтрино, сначала, кстати, постулированного Паули В.Паули из-за необходимости сохранения момента импульса при b-распаде, позволило объяснить процессы радиоактивного распада. Поэтому вначале казалось, что названные элементарные частицы и являются как бы основными кирпичиками мироздания.

Однако, к сожалению, приятная простота вскоре исчезла. Не прошло и года с открытия нейтрона (Чадвик, 1931), как был обнаружен позитрон. Он тоже сначала был предсказан Дирак П.А.М.Дираком в 1928 г., который показал, что его релятивистское уравнение может описывать как электрон с обычным отрицательным зарядом (-е), так и положительный электрон (+е). Этот позитрон был в дальнейшем в 1932 г. экспериментально обнаружен Андерсен Г.Х.Андерсеном. Впоследствии сначала в природных космических лучах, а затем и в построенных ускорителях были обнаружены и другие частицы - Мезонымезоны, пионы и т.д. Таких частиц сейчас насчитывается уже более двух сотен.

Релятивистской квантовой теорией было установлено, что любой элементарной частице соответствует Античастицыантичастица в том смысле, что имея одинаковые массы, периоды полураспада, а также одинаковые Квантовые числаквантовые числа, они проявляют противоположные электромагнитные свойства. Таким образом возникла глобальная проблема частица - античастица. Простой пример - разные по знаку заряда частицы. Причем при столкновении частицы и античастицы происходит Аннигиляцияаннигиляция, т.е. они взаимно уничтожают друг друга и при этом выделяется энергия в виде Квантквантов электромагнитного излучения (Фотонфотонов). Заметим, что фотоны, нейтральные пионы и η°-мезоны тождественны собственными античастицам, т.е. эти частицы и их античастицы не различимы. Все это множество частиц и принято называть элементарными частицами. Следует подчеркнуть, что это не означает, что все они обязательно являются упомянутыми кирпичиками мироздания - для этого достаточно Протонпротонов, Нейтроннейтронов и Электронэлектронов, из них состоят атомы. Но эти частицы возникают в результате основных взаимодействий частиц обычного вещества и участвуют в этих взаимодействиях, т.е. их тоже необходимо учитывать.

Изобилие типов элементарных частиц поставило перед физиками трудные вопросы: что же лежит в основе строения вещества, есть ли какая-нибудь общая схема, систематика, которая позволила бы просто и ясно объяснить взаимную связь элементарных частиц? Физики - тоже люди, и они упорно верят в то, что природе присуща внутренняя гармония и существует единый принцип, который, когда его откроют, позволит построить общую картину и систематизировать это обилие частиц.

В настоящее время в основе современной классификации элементарных частиц лежит их деление на два класса: сильновзаимодействующих (адроны) и слабовзаимодействующих (Лептонылептоны). Адроны делятся так же на Мезонымезоны и Барионыбарионы, а последние, в свою очередь, на Нуклоннуклоны (нейтроны и протоны) и Гиперонгипероны (λ, Σ, Θ, Ω). Название гипероны происходит от греческого «гипер» - выше, так как они тяжелее Протонпротона, барионы - греческого «барис» - тяжелый. К лептонам относятся Электронэлектроны, Мюонмюоны и Нейтринонейтрино. Барионы при любых реакциях могут превращаться в протоны или из них получаться. Барионам приписывается особое число В = 1, антибарионы имеют В = -1. В теории элементарных частиц показывается, что существует закон сохранения барионного числа в любом процессе. Именно этим законом обусловлена невозможность Аннигиляцияаннигиляции протона и электрона в обычных условиях, потому что протон - это барион, а электрон - лептон. С точки зрения квантовой статистики, частицы с разными (целыми и полуцелыми) Спинспинами могут также разделяться на Фермионфермионы (статистика Ферми Э.Ферми) с полуцелым спином (1/2) (электрон, нейтрон, Мюонмюон, протон, Гиперонгиперон), Бозонбозоны (статистика Бозе Ш.Бозе) с целым (0 или 1) спином (пион (π-мезон), каон (К-мезон), фотон). Фермионы всегда, без исключения, возникают или аннигилируют парами. С другой стороны, бозоны могут рождаться или поглощаться по одному и группами по нескольку частиц.

В дополнение к закону сохранения числа Барионыбарионов Гелл-Манн М.Гелл-Манн и Нишиджима К.Нишиджима в 1953 г. ввели еще одну квантовую характеристику - Странностьстранность S, для которой тоже существует закон сохранения, согласно которому странность сохраняется во всех сильных (ядерных) взаимодействиях. Эти законы позволяют прогнозировать природу взаимодействия различных элементарных частиц. К концу 50-х годов нашего века численность и разнообразие элементарных частиц настолько выросли, что классификация их только по массе, заряду и Спинспину, даже с учетом упомянутых законов сохранения барионного числа и странности, вызывала у физиков-теоретиков значительное неудовлетворение. Появлялись даже идеи, что за этим разнообразием скрывается некая симметрия.

Развитием этого поиска явилось еще одно изобретение Гелл-Манна (1963), а затем, независимо от него, Цвейг Дж.Цвейга (1964) - модель кварков. В этой модели предполагается, что все сильновзаимодействующие элементарные частицы являются комбинациями трех основных частиц (которые называются кварками) и их античастиц. Название «кварк» взято Гелл-Манном из туманной фазы романа Джойс Дж.Дж. Джойса «Поминки по Финнегану»: «Три кварка для мистера Марка». КваркиКварки имеют необычные свойства: электрический заряд, равный ±1/3 е или ±2/3 е, и барионное число (заряд), тоже дробное, равное ±1/3. Обозначения кварков и антикварков, а также их параметров даны в таблице.

Свойства кварков

  Символ Заряд
q
Странность
S
Барионное число B Спин
s
Kварки   +2/3 e 0 1/3 1/2
    –1/3 e 0 1/3 1/2
    –1/3 e –1 1/3 1/2
Антикварки   –1/3 e +1 –1/3 1/2
    +1/3 e 0 –1/3 1/2
    –2/3 e 0 –1/3 1/2

Таким образом, основные свойства кварков - заряд q (+2/3 е, -1/3 е, -1/3 е), странность S (0, 0, -1), барионное число В (1/3, 1/3, 1/3) и спин s (1/2) не похожи на свойства других частиц. Однако различные комбинации этих гипотетических частиц воспроизводят свойства всех известных адронов с поразительной точностью. Предполагается, что, например, Барионыбарионы построены из трех кварков, а мезоны - из двух кварков (кварк - антикварк). Реальны ли кварки в действительности или эта модель служит лишь удобным средством описания элементарных частиц, но лишена физического реального смысла? Пока это неизвестно. Кстати, последними исследованиями показано, что кварки не являются самыми «неделимыми». Обнаружены уже протокварки.

Тем не менее, несмотря на то, что экспериментально Кваркикварки в свободном состоянии не обнаружены, в теории элементарных частиц существует так называемая «стандартная модель». Согласно этой модели кварки различаются «ароматом»: u (от up - верхний), d (от down - нижний), s (от strange - странный), с (от charm - очарование), b (от beauty - красота), t (от truth - истинный). Кроме того кварки разделяются еще по одному параметру, который назвали «цветом». Для каждого кварка существует три «цвета»: красный, желтый и синий. Ясно, что к реальному цвету этот признак не имеет никакого отношения, так же как и «аромат» к реальному обычному запаху. Современные представления о природе таковы, что в рамках этой «стандартной модели» существуют всего три поколения кварков, Лептонылептонов и Нейтринонейтрино, которые и представляют собой начальный уровень структурной организации материи.

Остановимся теперь на характере взаимодействия элементарных частиц. В настоящее время известны четыре фундаментальных взаимодействия: гравитационное, электромагнитное, слабое и сильное. Гравитационное и электромагнитное взаимодействия по сути своих названий относятся к силам, возникающим в гравитационных и электромагнитных полях. Заметим еще раз, что несмотря на «приоритет» гравитационного взаимодействия, количественно установленного еще Ньютон И.Ньютоном, природа его до сих пор не является полностью определенной и на самом деле не ясно, как передается это действие через пространство.

Ядерные силы, относящиеся к сильным взаимодействиям, действуют на малых расстояниях в ядрах и обеспечивают их устойчивость, несмотря на отталкивающие действия кулоновских сил электромагнитных полей. Поэтому ядерные силы являются в основном силами притяжения и действуют между Протонпротонами (р-р), Нейтроннейтронами (n-n). Существует также протон-нейтронное взаимодействие (p-n). Поскольку эти частицы объединены в одну группу Нуклоннуклонов, то это взаимодействие нуклон-нуклонное. Слабые взаимодействия проявляются в процессе ядерного распада или более широко - в процессах взаимодействия электрона и Нейтринонейтрино (оно может существовать также и между любыми парами элементарных частиц). Как мы уже знаем, гравитационное и электромагнитное взаимодействия меняются с расстоянием как 1/r2 и являются дальнодействующими. Сильное ядерное и слабое взаимодействия являются короткодействующими. По своей величине основные взаимодействия располагаются в следующем порядке: сильное (ядерное), электрическое, слабое, гравитационное.

Этим основным взаимодействиям соответствуют четыре мировых константы. Заметим, что подавляющее число физических констант имеют размерности, зависящие от системы единиц отсчета, например в СИ заряд электрона е = 6 ×10-19 Кл, его масса m = 9,1 ×10-31 кг. Оказалось, что в различных системах отсчета основные единицы имеют не только различные размерности, но даже и численные значения. Такое положение не устраивает науку, так как, естественно, хотелось бы иметь безразмерные константы, не связанные в общем-то с условным выбором исходных единиц систем отсчета. Кроме того, фундаментальные константы не выводятся из физических теорий, а определяются экспериментально. В этом смысле теоретическую физику, действительно, нельзя считать самодостаточной и законченной для объяснения свойств природы, пока проблема, связанная с мировыми константами, не будет понята и объяснена [ссылка на источники литературы].

АнализАнализ размерностей физических констант приводит к пониманию того, что они играют очень важную роль в построении отдельных физических теорий. Однако, если попытаться создать единое теоретическое описание всех физических процессов, т.е., другими словами, сформулировать унифицированную научную картину мира от микро- до макроуровня, то главную, определяющую роль должны играть безразмерные, т.е. «истинно» мировые константы. Это и есть константы основных взаимодействий.

Константа гравитационного взаимодействия

<?xml version="1.0" encoding="UTF-16"?>
(1.6.4)

Константа электромагнитного взаимодействия

<?xml version="1.0" encoding="UTF-16"?>
(1.6.5)

Константа сильного взаимодействия

<?xml version="1.0" encoding="UTF-16"?>
(1.6.6)

где g - цветовой заряд, причем <?xml version="1.0" encoding="UTF-16"?>
. Индекс «s» - от английского слова «strong» (сильный).

Константа слабого взаимодействия

<?xml version="1.0" encoding="UTF-16"?>
(1.6.7)

где g ~ 1,4 ×10-62 Дж ×м3 - константа Ферми Э.Ферми. Индекс «w» - от английского слова «weak» (слабый). Заметим, что размерную константу гравитационного взаимодействия получил еще сам Ньютон И.И. Ньютон [ссылка на источники литературы]: G ~ 6,67×10-11м3×c2×кг-1 для сил гравитационного взаимодействия

F = G Mm/R2. (1.6.8)

Мы помним также, что закон всемирного тяготения (1.6.8) недоказуем, так как получен путем обобщения опытных фактов. Причем абсолютная справедливость его не может быть гарантирована до тех пор, пока не станет ясным сам механизм тяготения. Константа электромагнитного взаимодействия отвечает за превращение заряженных частиц в такие же частицы, но при изменении скорости их движения и появлении дополнительной частицы - фотона. Сильное и слабое взаимодействия проявляются в процессах микромира, где возможны взаимопревращения частиц. Константа сильного взаимодействия количественно определяет взаимодействие Барионыбарионов. Константа слабого взаимодействия связана с интенсивностью превращений элементарных частиц при участии Нейтринонейтрино и Антинейтриноантинейтрино.

Таким образом, считается, что все четыре вида взаимодействия и их константы обусловливают нынешнее строение и существование Вселенной. Так, гравитационное - удерживает планеты на их орбитах и тела - на Земле. Электромагнитное - удерживает электроны в атомах и соединяет их в молекулы, из которых, в том числе, состоим и мы сами. Слабое - обеспечивает длительное горение Солнца, дающего энергию для протекания всех процессов на Земле. Сильное взаимодействие обеспечивает возможность стабильного существования ядер атомов. Теоретическая физика показывает, что изменение числовых значений этих констант приводит к разрушению устойчивости одного или нескольких структурных элементов Вселенной. Например, изменение массы покоя электрона m0 от ~0,5 МэВ до 0,9 МэВ приведет к невозможности энергетического баланса в реакции образования дейтрона в солнечном цикле. ДейтронДейтрон - атом водорода, состоящий из Протонпротона и Нейтроннейтрона. Это «тяжелый» водород с А = 2 (тритий имеет А = 3). Уменьшение αs всего на 40% привело бы к тому, что дейтрон был бы не стабилен. Увеличение же делало бы стабильным бипротон, что привело бы к выгоранию водорода на ранних стадиях эволюции Вселенной. Константа αe изменяется в пределах <?xml version="1.0" encoding="UTF-16"?>
. Другие значения приводят к невозможности должного отталкивания протонов в ядрах, а это ведет к нестабильности атомов. Увеличение αw приводит к уменьшению времени жизни свободного нейтрона. Это, в свою очередь, означает, что на ранней стадии Вселенной не образовался бы гелий и не было бы реакции тройного слияния α-частиц при синтезе углерода (<?xml version="1.0" encoding="UTF-16"?>
). Тогда вместо нашей углеродной была бы водородная Вселенная. С другой стороны, уменьшение αw привело бы к тому, что все протоны оказались бы связаны в α-частицы.

В современном естествознании предполагается, что мировые константы стабильны начиная со времени 10-35 с с момента рождения Вселенной, и что таким образом в нашей Вселенной как бы существует очень точная «подгонка» числовых значений мировых констант, обусловливающих существование ядер, атомов, звезд и галактик. Возникновение и существование такой ситуации не ясно. Тем не менее, эта «подгонка» (константы именно такие, какие они есть!) создает условия для существования не только сложных неорганических, органических и живых структур, но, в конечном счете, и человека [ссылка на источники литературы].

Так из чего же все-таки состоит вещество Вселенной? Как ни странно, теоретическая физика, с точки зрения рассмотренной нами теории элементарных частиц, с ее могучим аппаратом и не менее могучими моделями отвечает: до 90% вещества Вселенной находится в неизвестном нам состоянии. Было установлено, что протоны и нейтроны образуют либо ядра различных атомов, либо громадные скопления Нейтронная звезданейтронных звезд. Поэтому в рамках «стандартной модели» кварков формы стабильной материи рассматриваются в виде двух групп: ядра атомов, имеющие массу не более 300 атомных единиц, и нейтронные звезды, имеющие структуру ядра (т.е. состоят из нейтронов и протонов), но с массой в 1054 раз большей. Эти группы разделены огромным пробелом, состоящим предположительно их так называемой «странной» материи, в котором, может быть, находится до 90% всей массы Вселенной (рис. Рис. 1.6.2. Возможные формы стабильной материи во Вселенной.).

Наличие возможности существования такой странной материи в кварковой модели строения вещества отчасти подтверждается выводом из наблюдений дальних галактик о невозможности наблюдения многих космологических объектов обычными астрофизическими методами. Это связано, в частности, с тем, что гравитационные поля видимых звезд или скоплений звездной пыли, по-видимому, недостаточны для создания условий из движения по наблюдаемым нами траекториям. Имеется как бы «скрытая» от наблюдателя масса. Уитмен Э.Э. Уитмен в 1984 г. высказал предположение, что эта «скрытая» масса состоит из материи, содержащей уже упомянутый S-кварк. Он как раз и называется странным кварком. Предполагается, что эта материя из странных кварков возникла в течение первой миллионной доли секунды после БВ, причем диаметр таких образований составлял от 10-7 до 10 см, масса от 109 до 1018 г, а число кварков от 1033 до 1042. Из-за малых размеров и огромной плотности вещества (например, теннисный мяч из такой же материи весил бы 1012 тонн) оно не проявляет себя в видимом диапазоне световых волн.

Для такого космологического объекта американским физиком Уиллер Дж.Уилером в 1969 г. был предложен термин Черная дыра«черная дыра» (ЧД). ЧД - это объект, у которого такое большое гравитационное поле, что он ничего (в том числе и излучение) от себя не отпускает. Наступает факт «пленения» света. Кстати, еще в 1798 г. Лаплас П.С.Лаплас говорил об объектах с огромной гравитацией, которые будут абсолютно черными для внешнего наблюдателя. ОТО показывает, что для таких полей масса объекта М должна соответствовать так называемому гравитационному радиусу R или радиусу сферы Шварцшильд М.Шварцшильда, который первый решил уравнение Эйнштейн А.Эйнштейна для поля тяготения сферического тела:

<?xml version="1.0" encoding="UTF-16"?>
(1.6.9)

Этим расстоянием будет определяться горизонт событий. Для Солнца гравитационный радиус равен 3 км, для Земли - 1 см. Однако ни Солнце, ни Земля до таких размеров самопроизвольно не уменьшатся.

Предполагаются два варианта образования ЧД в процессе эволюции звезд. Первый - для звезд с массой больше двух масс нашего Солнца. По мере старения звезды ядерное топливо (водород) сжигается и гравитационное притяжение уже не может уравновеситься давлением за счет горения топлива. Звезда сжимается и превращается в ЧД. Второй - для малых звезд массой значительно меньшей массы Солнца. В начальные моменты жизни Вселенной плотность материи огромна, и малые неоднородности вещества создавали большие неоднородности гравитационного поля, это могло приводить к образованию ЧД в малых областях пространства. Кстати, по одной из гипотез, Тунгусский метеорит - микрочерная дыра (по космическим масштабам), «вошедшая» в Землю в районе поселка Ванавара в Сибири и «вышедшая» из нее в районе Бермудских островов («Бермудского треугольника»).

Наличие такого огромного гравитационного поля у ЧД приводит к тому, что время течет все медленнее и медленнее по мере приближения к ЧД. На расстоянии гравитационного радиуса время полностью останавливается с точки зрения удаленного наблюдателя, т.е. ЧД искривляет пространство и тормозит время. Как отмечал Паркер Б.Б. Паркер, «Попав в ЧД, наш наблюдатель не сможет сообщить о том, что видит: он все время будет приближаться к ее центру... в центре будет находиться то, что осталось от звезды после коллапса - сингулярность (нулевой объем). По мере приближения к сингулярности наблюдатель заметит, что Пространствопространство и Времявремя поменялись ролями. По «нашу» сторону горизонта событий мы можем управлять пространством, но не временем: время течет одинаково независимо от наших действий. Но за горизонтом, как ни странно, можно управлять временем, но не пространством - нас затягивает сингулярность, хотим мы этого или не хотим. Оказавшись с ней рядом, мы поймем, что нас ждет та же судьба, что и звезду - нас сожмет до нулевого объема». В этом смысле ОТО описывает звезду как «кладбище» всего того, что ЧД успела захватить.

В 1975 г. Хокинг С.С. Хокинг [ссылка на источники литературы] показал, что ЧД может «дышать» - гравитационное поле вблизи поверхности ЧД рождает в вакууме пары частиц, одна из которых захватывается ЧД, а другая улетает в окружающее пространство, т.е. получается, что Черная дырачерная дыра может излучать частицы разных видов. Надо все же заметить, что мы у себя на земле этого пока не можем зарегистрировать. Это квантовое излучение не существенно для ЧД, образованных из звезд в процессе эволюции, но существенно для тех ЧД, которые образовались на начальном этапе жизни Вселенной. Астрономическими наблюдениями двойных звезд, вращающихся вокруг общего центра масс, такая ЧД была обнаружена в 1972 г. в системе Лебедь-Х-1. Отметим также, что ЧД - не просто необычный небесный объект, но в известном смысле дыра в пространстве и времени.

В последние годы появились предположения, что черные дыры являются областями перехода от одного пространства к другому пространству с отличной от первого размерностью и, следовательно, с другими физическими свойствами. То, что выглядит в «нашем» трехмерном пространстве как черная дыра, в другом - является Белая дыра«белой дырой», через которую захваченная материя выходит в это другое пространство [ссылка на источники литературы].

Вернемся еще раз к странной материи. Предполагается, что главное отличие странной материи от обычной состоит в разных значениях отношения заряда к массе (q/m). Для обычной материи это отношение лежит в пределах от 1/3 (дейтерий, тритий) до 1 (один протон у обычного водорода), у большинства изотопов других атомов ~ 1/2 из-за того, что число Протонпротонов примерно равно числу Нейтроннейтронов. Для странной материи это отношение q/m лежит в пределах от 1/10 до 1/20.

Кто бы мог подумать, что мы
будем так много знать и так
мало понимать.

А. Эйнштейн

Раз мы заговорили о попытках единого описания всех физических явлений, следует вкратце упомянуть о моделях единого физического поля (ЕФП). Такие попытки неоднократно предпринимались, начиная с Эйнштейна. Хотя до настоящего времени этой теории нет, можно отметить, что Вайнберг С.С. Вайнберг, Глэшоу Ш.Ш. Глэшоу и Салам Э.Э. Салам в 1967 г. показали, что слабое и электромагнитное взаимодействия есть одно и то же электрослабое (так они его назвали) взаимодействие, проявляющееся при энергиях свыше 100 ГэВ. При меньших энергиях спонтанно нарушается симметрия между ними, и в обычных условиях мы наблюдаем их как разные поля и взаимодействия. Ш. Глэншоу и Джордан Г.Г. Джордан в 1979 г. предположили, что при энергии свыше 1014 ГэВ слабое, электромагнитное и сильное взаимодействия также объединяются. Это так называемая первая теория Великого объединения (ТВО). По этой теории Лептонылептоны могут переходить в Кваркикварки и наоборот.

Однако, как мы помним, кварки имеют барионный заряд, не равный нулю, а у лептонов В = 0. Следовательно, здесь уже при таких превращениях нарушается закон сохранения барионного заряда. Кроме того возникает вопрос, насколько стабилен протон, время жизни которого составляет порядка 1030-1032 лет. По сравнению с временем существования Вселенной (~1010 лет) это время жизни протона значительно больше, чем возраст нашей Вселенной.

Если это действительно так, то возникает гипотеза, что вещество во Вселенной может быть не стабильно. Кроме того ТВО «разрешает» существование в свободном состоянии кварков, и тогда они действительно являются фундаментальными частицами. И наконец, при энергиях свыше 1019 ГэВ возможно включение в общую схему объединения взаимодействий и гравитационных полей. Это и есть модель (или теория) супергравитации или суперсимметрии. Здесь происходит объединение симметрии ОТО. Частицами-переносчиками должны быть безмассовые частицы со Спинспином s = 2, называемые гравитонами, о которых мы уже упоминали.

Физический вакуум порождает виртуальные (возможные) частицы, которые своей массой создают дополнительное поле тяготения. Согласно ОТО, в этом же месте и в тот же момент времени изменяются геометрические свойства пространства-времени, т.е. оно флуктуирует. Согласно такой модели, Гравитонгравитон - это Квантквант флуктуирующего пространства-времени, объединяющий в себе и элементарную частицу, и волну искривления, распространяющуюся по четырехмерному миру. Эффекты, связанные с этим, должны проявляться на так называемых планковских расстоянии <?xml version="1.0" encoding="UTF-16"?>
и времени <?xml version="1.0" encoding="UTF-16"?>
, соответствующая масса <?xml version="1.0" encoding="UTF-16"?>
. Индекс «р» обозначает, что эти параметры - соответствуют планковским расстоянию, времени и массе. Отсюда делается вывод, что в ранние моменты существования Вселенной пространство-время было дискретным, квантованным, как это следует из физического смысла константы Планк М.Планка.

Волну искривления пространства связывают в теории супегравитации с моделью суперструн. В этой модели в качестве элементарной основы мира берутся уже не описанные элементарные частицы, а элементарные процессы - колебания бесконечно длинных струн с очень малым диаметром. При этом могут возникать Резонансрезонансы колебаний разных струн и вихри в пространстве, которые можно связать с ритмикой КосмосКосмоса, циклическими процессами во Вселенной, оказывающими влияние на все процессы на Земле [ссылка на источники литературы].

В теории супергравитации также показывается, что, согласно Калуца Т.Т. Калуце (1921 г.) и Клейн О.О. Клейну (1926 г.), электромагнитное поле можно рассматривать как некое геометрическое свойство дополнительного пятого измерения пространства-времени. Не вдаваясь в теоретические тонкости, отметим, что это ненаблюдаемое пятое измерение сворачивается (компактифицируется) до малых ненаблюдаемых размеров. Это приводит к геометрическим симметриям, связанным с семью дополнительными измерениями пространства, компактифицированными в семимерную сферу. Тогда можно предположить, что мы живем в 11-мерной Вселенной. Это - три видимых пространственных измерения, семь невидимых, свернутых в пространстве, и время. Таким образом, новая и последняя на сегодняшний день в теоретической физике безразмерная константа - размерность Вселенной N = 11.

Свертка ненаблюдаемого измерения может быть качественно понята из приведенного примера бесконечно длинной струны, которую мы видим в одном измерении - длине. Микрообъекты рассматриваются уже не как точечные, а как одномерные. Исчезновение размерности можно также увидеть при свертывании плоского листа в цилиндр или в ленте Мебиус А.Ф.Мебиуса, в которой происходит непрерывный переход с внешней поверхности листа на внутреннюю.

В связи с теорией ЕФП в настоящие время рассматривается также возможность существования Кванткванта единого пространства-времени, который называется st (space - time)-квантом [ссылка на источники литературы]:

<?xml version="1.0" encoding="UTF-16"?>
(1.6.10)

Если st-квант действительно существует, то это приводит к интересным выводам: в «объеме» st-кванта нарушены причинно-следственные связи. События, происходящие в st-кванте могут быть растянуты во времени, но сжаты в пространстве и наоборот. На уровне st-кванта пространство-время непрерывно творит само себя с изменяющимися в каждом акте топологией, физическими свойствами и Законзаконами из-за неопределенности пространства-времени. СпонтанныйСпонтанные Флуктуацияфлуктуации пространства-времени могут привести к нарушению Закон сохранения энергиизакона сохранения энергии. Предполагается, что в эти особые моменты, по-видимому, и произошел БВ. И наконец, существует возможность существования непрерывного множества виртуальных вселенных.

Существуют и другие попытки описать многомерность пространства, представить его расслоенным и даже мнимым в окрестностях черных дыр, когда объект пересекает сферу Шварцшильд М.Шварцшильда [ссылка на источники литературы]. При этом частица, не наблюдаемая в одном пространстве, может наблюдаться в другом, и поэтому частицы тахионы, движущиеся со скоростями, большими скорости света, и Тардионтардионы, движущиеся со скоростями, меньшими скорости света, существуют в разных расслоенных пространствах, и принцип причинности не нарушается. Имеется также гипотеза Иванов Ю.И.Ю. Иванова о частотном пространстве [ссылка на источники литературы]. Согласно этой модели трехмерному геометрическому пространству сопоставляется сферическое частотное пространство, шаровыми слоями которого являются: не видимая человеческим глазом ультрафиолетовая область (УФ) спектра, видимая область спектра (оптический диапазон), невидимая инфракрасная область (ИК) спектра (рис. Рис. 1.6.3. Модель трехмерного частотного пространства.). Тогда появление неопознанных летающих объектов (НЛО), «материализацию» или, наоборот «дематериализацию» различных физических объектов Ю. Иванов объясняет переходом из одного частотного пространства в другое. В связи с такой гипотезой предполагается, что рядом с нами в УФ- и ИК-областях частотного пространства процессы, в том числе и само время, могут протекать по-иному и, следовательно, может существовать другая, быть может, разумная жизнь.

Другой ультрасовременной моделью строения пространства является попытка заполнить его кубами с планковскими размерами, внутри которых каким-то образом вращаются взаимно противоположно петли времени Хокинг С.С. Хокинга, переходы между которыми в известном смысле, и соответствуют переходам от одного пространства к другому. Все эти модели, конечно, являются умозрительными и требуют дальнейшего доказательства и экспериментального подтверждения. Как сказал Фейнман Р.Р. Фейнман, «многие физики трудятся над создание великой картины, объединяющей все в одну сверхмодель. Это восхитительная Играигра, но в настоящее время игроки никак не договорятся о том, что представляет собой эти великая картина».

В связи с уже упомянутой ранее «подгонкой» мировых констант встает вопрос не только о пределах изменения их значений в отдельности, но и об изменении в целом всего набора этих констант, позволяющем судить об устойчивости структуры Вселенной.

Следует заметить, что с общечеловеческой точки зрения разумным ограничением изменения набора констант в целом является сохранение условий для возникновения и существования жизни. Попыткой ответа на вопрос, что же определяет столь точную «подгонку» мировых констант, что реализует существование сложной структуры Вселенной и образование жизни вообще, стало применение скорее гуманитарного, чем естественнонаучного антропного принципа (АП), согласно которому наша Вселенная обладает наблюдательными свойствами именно потому, что эти свойства допускают возможность существования наблюдателя, т.е. человека.

Антропный принципАнтропный принцип впервые в 1958 г. был предположен нашим соотечественником Идлис Г.Г. Идлисом и затем Картер Б.Б. Картером в 1974 г., но в неявном виде он уже функционировал и раньше в виде Антропоморфизмантропоморфизма. Этот принцип применяется в слабом и сильном вариантах.

Слабый антропный принцип. На свойства Вселенной накладываются ограничения наличием нашей разумной жизни. То, что наблюдают астрономы, зависит от присутствия наблюдателя.

Сильный антропный принцип. Свойства Вселенной должны быть такими, что бы в ней обязательно была жизнь.

Согласно этим принципам между фундаментальными свойствами Вселенной и возможностью существования в ней жизни установлены строго определенные отношения. Как мы уже отмечали, фундаментальные свойства мира количественно выражаются через фундаментальные постоянные и при их незначительном изменении может сильно измениться сценарий развития Вселенной, а теперь мы можем сказать, что и самой жизни во Вселенной, естественно, в нашем понимании. Таким образом, антропный принцип по сути превращает факт появления человека во Вселенной из случайного, незначительного, в центральный, приоритетный. «Любая физическая теория, которая противоречит существованию человека, очевидно, не верна» [ссылка на источники литературы].

Заметим также, что антропный принцип не отвергает возможности существования других Вселенных. Однако Эволюцияэволюция может происходить без наблюдателей, и, следовательно, жизнь в нашем понимании в них невозможна. При использовании антропного принципа появляется возможность моделировать другие допустимые Вселенные, что, с точки зрения современной физики, доказывает существование множества миров.

Кроме того, АП приводит к мировоззренческим уточнениям не только по множественности обитаемых Вселенных, но и по множественности существования жизни в нашей Вселенной. Как справедливо указывалось в [ссылка на источники литературы], вопрос о существовании жизни в нашей Вселенной в свете антропного принципа приобретает новую окраску. Он означает, что наша Вселенная чрезвычайно тонко приспособлена для возникновения и существования жизни. Можно было бы подумать, что это относится к отдельной достаточно крупной, но все же локальной области Вселенной, где в силу случайной Флуктуацияфлуктуации создались условия, необходимые для существования жизни. Но как мы уже говорили, предполагается, что Вселенная однородна и изотропна, т.е. ее свойства в больших масштабах одинаковы. Следовательно, когда мы говорим о чрезвычайно тонкой приспособленности Вселенной для жизни, речь идет не о локальных областях, а обо всей Вселенной в целом. Таким образом, применение АП приводит к выводу о закономерном возникновении и широкой распространенности жизни и РазумРазума во Вселенной. Антропный принцип, с точки зрения физики и философии, «отвергает» возможность уникальности земной жизни. Проблемы множественности миров неоднократно обсуждались на всех этапах человеческого Обществообщества. Например, Анаксагор выступил с идеей о гониометриях, каждая из которых содержит в себе все свойства Вселенной. Другой пример признания множественности миров дает нам Бруно Дж.Джордано Бруно, сожженный, как известно, инквизицией за эту идею.

В современном естествознании к этой идее приводит ОТО, одним из выводов которой является представление, что наш мир снаружи может выглядеть как микрочастица. Такие объекты наш соотечественник Марков А.А.А.А. Марков назвал фридмонами. Дальнейшее развитие идей о множественности миров привело к пониманию, что Земля находится не в центре Солнечной системы. Шекли Х.Х. Шекли показал, что и Солнце находится не в центре Галактики, а вблизи ее края. Хаббл Э.Хаббл и другие исследователи установили, что наша Галактика не только не является центром Вселенной, но и более того, у нашей Вселенной вообще нет пространственного центра - все ее точки эквивалентны. Как уже упоминалось, совсем недавно мы стали понимать, что состоим не из основной материи Вселенной. А расширение Вселенной на ранних стадиях означает, что наша Вселенная - не единственный из раздувшихся «шариков» (Помните наш пример с воздушными шариками?).

Анализ современных теорий физики элементарных частиц, данных Астрофизикаастрофизики и Космологиякосмологии показывает необходимость одновременного выполнения некоторых соотношений относительно мировых констант в дополнение к упомянутым уже формулам (1.6.4 - 1.6.7):

<?xml version="1.0" encoding="UTF-16"?>
(1.6.11)

Это само по себе в обычном понимании довольно противоречиво. Если, согласно [ссылка на источники литературы], изобразить на плоскости Х, Y, где <?xml version="1.0" encoding="UTF-16"?>
и <?xml version="1.0" encoding="UTF-16"?>
, эти неравенства графически, то получается, что неравенствам (1.6.11) удовлетворяют две области (рис. Рис. 1.6.4. Схематическое изображение областей, соответствующих устойчивым областям Вселенной.), соответствующие устойчивым Структураструктурам Вселенных. В области 1 образование сложных структур и жизни невозможно, так как минимальная масса в ней - порядка массы протона (m ~10-5 г).

В области 2 будут выполняться условия для существования нашей Вселенной. В области 3 значения фундаментальных констант отличны от наших, но там тоже могут возникать сложные структуры. Однако зоны, где соблюдаются условия (1.6.11), соответствующие возникновению и наличию жизни, занимают предположительно незначительную часть области 3.

Заметим также, что фундаментальные константы играют важную роль в построении масштабов нашего мира. Они позволяют дать некую иерархическую картину структуры Вселенной. Это можно пояснить графически представлениями изменения размеров тел и расстояний, а также их масс (рис. Рис. 1.6.5. Масштабы Вселенной, Рис. 1.6.6. Масштабы микромира). Действительно, наиболее естественными и наглядными квалификационными признаками являются размер объекта и его масса. Выделяют микромир с характерными размерами меньше, чем 10-8 м (элементарные частицы, ядра, атомы, молекулы), макромир (макромолекулы, кристаллы, жидкости, газы, живые организмы, человек, объекты техники, т.е. макротела) и мегамир (планеты, звезды, галактики). Понятно, что границы микро- и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты построены из микрообъектов и в основе макро- и мегаявлений лежат микроявления. И это наглядно видно на примере построения Вселенной из взаимодействующих элементарных частиц в рамках Космомикрофизикакосмомикрофизики. На самом деле мы должны понимать, что речь идет лишь о различных уровнях рассмотрения вещества. Микро-, макро- и мегаразмеры объектов соотносятся друг другу как макро/микро » мега/макро.

КваркиКварки «являются» составной часть Протонпротонов и Нейтроннейтронов, затем из них образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале разномерности тел, то мы приходим у обычным макротелам и далее - планетам и их системам, звездным скоплениям, галактикам и метагалактикам, т.е. можно представить переход от микро, макро и мега как в размерах, так и физических процессах (моделях). И именно фундаментальные мировые константы определяют масштабы иерархической структуры материи нашего Мира. Очевидно, что сравнительно небольшое их изменение и должно приводить к формированию качественно иного мира, в котором стало бы невозможным образование ныне существующих микро-, макро- и мегаструктур и в целом высокоорганизованных форм живой материи. Имеющая место «подгонка» мировых констант, т.е. определенные их значений и взаимоотношений между ними, по существу и обеспечивает структурную устойчивость нашей Вселенной. Поэтому проблема казалось бы абстрактных мировых констант имеет глобальное мировоззренческое значение.

Антропный принципАнтропный принцип требует также, чтобы средняя плотность вещества Вселенной ρср была бы близка к критической ρкр', так как при <?xml version="1.0" encoding="UTF-16"?>
время существования нашего Мира было бы настолько мало, что за это время жизнь не могла бы возникнуть. Такой взгляд коррелирует с моделью развития Вселенной, построенной на положениях классической динамики Ньютона.

Как мы уже видели в главе 1.3 из упомянутого закона всемирного тяготения Ньютон И.Ньютона, по аналогии с электромагнитным полем вводится напряженность гравитационного поля Е и потенциал этого поля φ:

<?xml version="1.0" encoding="UTF-16"?>
(1.6.12)

Если учесть, что размеры Метагалактики ~ 1023 км, а размеры крупных скоплений Галактик 1020-1021 км, то Метагалактику можно считать однородной и изотропной с большой точностью (~0,1-1%). Тогда можно рассматривать динамику Метагалактики как поведение однородного изотропного шара в собственном гравитационном поле. Используя стандартное уравнение Ньютона

<?xml version="1.0" encoding="UTF-16"?>
(1.6.13)

подставляя значение силы из основного уравнения динамики и считая, что m = const, получим

<?xml version="1.0" encoding="UTF-16"?>
(1.6.14)

Если Е > 0, то скорость v = dR/dt > 0. Следовательно, для этих условий получается, что Метагалактика открыта и всегда расширяется. Если же Е < 0, то существует момент времени, когда v = 0 и расширение сменяется сжатием. Эти условия соответствуют закрытой Метагалактике. Скорость разлета галактик друг от друга, как мы уже знаем, определяется законом Хаббл Э.Хаббла (1.6.1). Подставляя (1.6.14) в (1.6.1) и учитывая, что <?xml version="1.0" encoding="UTF-16"?>
, получим

<?xml version="1.0" encoding="UTF-16"?>
(1.6.15)

где

<?xml version="1.0" encoding="UTF-16"?>
(1.6.16)

Отсюда делается вывод, что если Вселенная открыта (Е > 0), то ρкрср', если закрыта (Е < 0), то ρкрср. Кстати, если Е = 0, то из решения (1.6.13) - (1.6.16) следует, что

<?xml version="1.0" encoding="UTF-16"?>
(1.6.17)

Однако современная наука не дает однозначного ответа, какое из этих отношений между ρкр и ρср справедливо, поскольку предполагается, что часть вещества находится в «невидимом» состоянии. Оценка же дает близкие значения ρкр≈10-29 г ×см-3 и ρср≈10-30 г ×см-3. Заметим, что из приведенных рассуждений следует, что уже в рамках ньютоновской механики следует возможность нестационарной, или, как мы уже знаем, пульсирующей Вселенной. Из таких вариантов эволюции Вселенной можно сделать следующий вывод: Вселенную в целом можно рассматривать как открытую систему, в которой происходят, необратимые и неравномерные процессы. Тогда ρкрср. Во всяком случае ρкр и ρср близки по своим значениям и, следовательно, антропный принцип выполняется. Заметим также, что радиус R в уравнениях (1.6.13) - (1.6.16) не должен быть больше критического R = 2GM/c2, поскольку в нашем миропонимании и признании ОТО скорость разбегания галактик не должна превышать скорость света. Теорией было также показано, что при ρср≈ρкр пространство может считать псевдоевклидовым и число пространственных измерений опять же сводится к трем. Это вообще неудивительно, так как модель развита в рамках теории Ньютона. Заметим еще один интересный результат, полученный в 20-х годах Эренфест П.П. Эренфестом: при четном числе пространственных координат не должно существовать замкнутых орбит планет и невозможна передача информации путем волн, что может служить дополнительным свидетельством в пользу, трехмерности пространства и правильности антропного принципа.

В связи с проблемой элементарных частиц и их симметрией встал и другой вопрос, важный для Космологиякосмологии. Поскольку элементарные частицы, как уже знаем, имеют свои Античастицыантичастицы, т.е. наблюдается некая симметрия, то законно спросить - если во Вселенной есть вещество, то может ли там быть и Антивеществоантивещество? А исходя из тех же принципов симметрии, вопрос можно поставить и так: не следует ли предположить, что вещество и антивещество встречаются во Вселенной в равных количествах, т.е. может быть есть и антизвезды и антигалактики? Как можно отличить антизвезду от звезды? Казалось бы легко: атомы антиводорода испускают антифотоны, и если мы их обнаружим, то фиксируем тем самым антивещество, их излучающее. Однако как мы уже указывали, фотон тождественен своей античастице - антифотону, и не существует различия между фотонами, излучаемыми атомами водорода и атомами антиводорода. Поэтому по электромагнитным измерениям нельзя отличить вещество от антивещества.

Можно попробовать оценить количество антивещества во Вселенной по энергии Аннигиляцияаннигиляции при столкновении атомов и антиатомов. Часть этой энергии аннигиляции уносят из Галактики фотоны и Нейтринонейтрино, а другая часть (электроны и позитроны) удерживается магнитными полями и остается в Галактике. Эти частицы, сталкиваясь в дальнейшем с атомами или антиатомами, передают свою энергию межзвездному газу. Оценка средней плотности энергии в межзвездном пространстве Галактики дает значения 1-10 эВ/см3, откуда верхний предел концентрации Антивеществоантивещества в межзвездном газе получается равным около 10-7см-3. Так как доля антивещества в межзвездном газе не может превышать этой крайне малой величины, то делается вывод, что звезды нашей Галактики состоят преимущественно, а скорее всего исключительно из обычного вещества. К такому же выводу приводит и оценочный расчет отношения числа нуклонов к числу антинуклонов. Оно оказалось равным 108-1010. Последний результат получил название барионной асимметрии Вселенной. Из этих оценочных расчетов следует очень важный вывод, что в целом Вселенная изначально с момента БВ антисимметрична, что весьма существенно для физики возникающего и живого. Что касается антигалактик, то если они предположительно существуют, то должен существовать механизм разделения вещества и антивещества в момент БВ, иначе они просто аннигилируют. Такой механизм пока нам не известен.

Рассмотрим теперь механизм зарождения и развития звезд, а также в связи с этим классификацию звезд и методы их наблюдения. Мы уже отмечали, что согласно гамовской модели БВ все элементы Вселенной образовались в результате термоядерных реакций. Остановимся на этом подробнее. При конденсации звезды из облака межзвездных газа и пыли высвобождается гравитационная потенциальная энергия. Часть этой энергии расходуется на излучение, а остальная часть преобразуется в кинетическую энергию конденсирующих атомов, и, таким образом, повышается температура звезды. При температурах Т ~ 107 К и плотности ~ 100 г/см3 начинаются термоядерные реакции, которые могут идти в зависимости от первоначального состава межзвездной пыли и, следовательно, звезд по двум схемам или цепочкам. Большинство звезд состоит в основном из водорода (60-90% по массе), гелия (10-40%) и тяжелых элементов (0,1-3%). Звезды, в состав которых входят кроме водорода и гелия тяжелые элементы, выброшенные при вспышках так называемых новых или взрывах сверхновых звезд, называются звездами населения I.

Новыми звезды называются потому, что в древности предполагалось, что это действительно новые звезды и до взрыва их нельзя было видеть. На самом деле в некоторых звездах возникают неустойчивости, происходит извержение вещества в пространство и светимость ее резко увеличивается. Частота извержений изменяется от нескольких месяцев до лет. У остальных звезд извержения бывают примерно раз в 1000 лет. Сверхновые звезды фактически связаны со взрывом массивной звезды, что бывает один раз в несколько столетий. За 10 последних веков обнаружено 7 сверхновых звезд. Интенсивность излучения сверхновых звезд в 104 раз больше, чем у новых. Наше родимое Солнце с 74% Н, 24% Не и 2% тяжелых элементов есть обычная звезда населения I. Звезды населения II образовались из первичного водорода и гелия и в основном содержат гораздо меньше остаточного материала других звезд. Они содержат много водорода, мало гелия и очень мало тяжелых элементов.

В первой термоядерной реакции, происходящей при конденсации из межзвездной пыли, участвует лишь водород. При достижении указанных температур и плотностей газа происходит реакция слияния (присоединения) двух протонов в результате слабых взаимодействий:

<?xml version="1.0" encoding="UTF-16"?>
, (1.6.18)

где D2 - дейтерий, β+ - позитрон, ve - нейтрино.

Заметим, что мог бы образоваться изотоп He2, но его в природе не обнаружено. Как только в результате реакции (1.6.18) образуется D2, начинаются еще две дополнительные реакции:

первая <?xml version="1.0" encoding="UTF-16"?>
(1.6.19)

и за ней вторая с участием двух ядер He3

<?xml version="1.0" encoding="UTF-16"?>
. (1.6.20)

Конечным результатом этой последовательности реакции, которая называется протон-протонной цепочкой, является превращение четырех атомов водорода в один атом гелия (рис. Рис. 1.6.7. Схематическое изображение протон-протонной цепочки).

Полная энергия, выделяющаяся при такой реакции, составляет 26,76 МэВ. ПозитронПозитроны и Кванткванты, возникающие в этих реакциях, поглощаются в центре звезды. НейтриноНейтрино из-за слабого взаимодействия покидает звезду, унося свою энергию. С учетом потери этой энергии в каждой протон-протонной цепочке выделяется 26,3 МэВ или 6,5 МэВ на нуклон. Каждый грамм водорода, превращаясь в гелий, высвобождает примерно 6 ×1018 эрг. Поэтому Солнце, где ежесекундно в реакцию вступает ~6 ×1014 г водорода, выделяет мощность ~4 ×1026 Вт. Обычно условия, при которых идут термоядерные реакции, существуют лишь внутри звезды. Испускаемый свет с поверхности звезды (а это Фотонфотоны) характеризует более холодное вещество.

В целом фотоны оказывают радиационное давление на внешний слой звездного газа. Как нам уже известно из ОТО, масса m обладает энергией Е = mc2. И, наоборот, энергии Е соответствует определенная масса m. Следовательно, электромагнитное излучение с энергией Е обладает эквивалентной ей массой m = Е/c2. И поскольку электромагнитное изучение распространяется со скоростью света с, то оно имеет и импульс, согласно (3.8)<?xml version="1.0" encoding="UTF-16"?>
= mc = E/c, и, следовательно, оказывает радиационное давление. В равновесии действующее на любой малый объем звездного вещества давление, обусловленное гравитацией, уравновешивается радиационным давлением. Как только термоядерные реакции обеспечивают достаточное излучение для того, чтобы уравновесить направленную внутрь гравитационную силу, сжатие звезды прекращается. Тем самым мы снова приходим к пониманию пульсирующей теперь уже звезды, как раньше в целом Вселенной.

Если в звезде имеется некоторое количество углерода, то может осуществиться еще одна цепочка реакций, в результате чего также происходит превращение водорода в гелий, а углерод служит как бы катализатором:

<?xml version="1.0" encoding="UTF-16"?>
(1.6.21)

Таким образом, согласно (1.6.21) три протона захватывают в следующих друг за другом реакциях (ρ, γ) и β-распадах. А после захвата четвертого протона и излучения α-частицы вновь образуется ядро C12. Конечный результат этой цепочки тот же, что и в рассмотренной протон-протонной: превращение четырех атомов водорода в один атом гелия. Так как в этой последовательности участвуют и образуются атомы углерода и азота, то ее и называют Углеродо-азотный цикл углеродо-азотным циклом. Если в состав звезды входит углерод и температура выше 2 ×107 К, то основным источником энергии является углеродно-азотный цикл. Более массивные и яркие, и поэтому более горячие, звезды выделяют энергию за счет углеродно-азотного цикла. Примером таких звезд является одна из самых ярких звезд северного полушария - Сириус. Основным источником энергии Солнца служит протон-протонная цепочка.

Не останавливаясь далее на деталях физики процессов в звездах, заметим, что в результате других ядерных реакций, в том числе с участием нейтронов (а это образование элементов с атомным номером больше 82), могут образовываться и тяжелые элементы. При реакции образования углерода из трех атомов гелия <?xml version="1.0" encoding="UTF-16"?>
наблюдается также процесс выгорания гелия по следующей цепочке:

<?xml version="1.0" encoding="UTF-16"?>

и т.д.

Рассмотрим теперь процесс эволюции звезд. Итак, звезды конденсируются из межзвездной пыли, возникают термоядерные реакции, звезды разогреваются, сжигают свое ядерное горючее и гибнут, взрываясь в виде сверхновых, или просто угасают, превращаясь в куски ядерного пепла. О взаимоотношениях гравитационного и радиационного давлений мы уже говорили. Если эти давления уравновешиваются, то звезда стабилизируется и приобретает характерные для нее размеры и светимость. Астрономы установили, что для того, чтобы проследить за эволюцией звезд, достаточно знать две величины, которые сравнительно легко измерить: собственную светимость и цвет, характеризующий температуру поверхности. Поэтому можно построить в этих координатах зависимость светимости от цвета, и поскольку каждая звезда в любой период жизни имеет определенную светимость и определенный цвет, то она будет точкой на этой диаграмме. Так как звезды разные по времени своего развития, то можно сказать, что в течение жизни звезды точка, ее представляющая, движется по этой диаграмме, описывая некую кривую. Таким образом можно проследить процесс жизни и угасания звезды.

Если же говорить о конкретной динамике поведения звезды, то она зависит только от двух факторов: массы вещества, из которого она конденсировалась, и состава этого вещества. В начальный период жизни звезды играет роль только ее масса. Если сравнивать динамику звезд, химический состав которых подобен составу Солнца, т.е. звезд населения I, то окажется, что на протяжении большей части своей истории эти звезды занимают положения вблизи так называемой главной последовательности (рис. Рис. 1.6.8. Главная последовательность звезд населения I, к которым относится солнце, m[c] - масса солнца). Начальное положение звезды зависит от ее массы: более массивные звезды оказываются более горячими и яркими, менее массивные звезды холодные и тусклые. Так как большую часть своей жизни звезда стабильна, диаграмма цвет - светимость для любой группы звезд представляет собой распределение точек вдоль главной последовательности. Однако на этой диаграмме будут наблюдаться и отклонения от главной последовательности. Это связано с начальным составом и массой звезды и ее переходом из одного типа к другому. Солнце перемещается вдоль главной последовательности уже 4,5 ×109 лет и будет продолжать это движение дальше 5 ×109 лет, а затем перейдет к последним этапам своей эволюции. Более массивные звезды проходят этот путь быстрее, поскольку они расположены на главной последовательности более высоко и время прохождения цикла составляет ~107 лет. По мере уменьшения количества водорода внутри звезды она сжимается. Это приводит к увеличению температуры и началу выгорания гелия. При превращении гелия в углерод выделяется большое количество энергии и поэтому светимость звезды возрастает.

С другой стороны, увеличение энергии приводит к увеличению радиационного давления на внешнем слое звезды, и внешние слои расширяются. В результате этого расширения газ охлаждается, излучаемый свет становится более красным и звезда резко смещается от главной последовательности (рис.Рис. 1.6.9. Диаграмма эволюции звезд населения I.). Этот процесс расширения и покраснения идет до тех пор, пока диаметр звезды не увеличится в 200-300 раз, и звезда становится красным гигантом. Примером красного гиганта является звезда Бетельгейзе из созвездия Ориона. ЭволюцияЭволюция нашего Солнца к стадии красного гиганта приведет к тому, что оно сначала сожжет Землю из-за огромного количества выделившейся энергии, а затем в результате гигантского расширения поглотит ее останки. Однако заметим, что по расчетам астрономов до этого момента пройдет около 5 миллиардов лет. Время пребывания обычной звезды в виде красного гиганта составляет около 107 лет.

Достигнув на этой стадии максимальных размеров, звезда быстро смещается влево на диаграмме светимость - цвет. Этот переход от красного гиганта до пересечения с главной последовательностью составляет примерно 1% от всего времени существования звезды. Солнце, например, пройдет эту эволюцию за 100 миллионов лет. В этот период у большинства звезд нарушается равновесие и они начинают пульсировать, изменяя свою светимость. Это так называемые переменные звезды. Далее эволюция идет в зависимости от массы звезды. Если она меньше 1,4 солнечной массы («легкая» звезда), то при израсходовании ядерного горючего звезда смещается вниз на диаграмме светимость - цвет и в конце концов она охлаждается и угасает. Но при этом она проходит через стадию неустойчивости и происходят периодические извержения и возрастания светимости. Это и есть уже упомянутая стадия новой звезды, которая постепенно переходит в стадию белого карлика, еще более охлаждаясь - красного карлика, и наконец - черного карлика. Эволюция звезды, масса которой больше 1,4 солнечной массы, кончается эффектным гигантским взрывом и это - рождение сверхновой звезды.

Что происходит после взрыва сверхновой звезды? Астрофизики показали, что при возникающих в этом случае высоких давлении и температуре, образуются условия для образования Нейтроннейтронов. В результате электроны как бы «вжимаются» в ядра, исчезает электростатическое отталкивание и под действием тяготения нейтронное вещество коллапсирует, образуя маленький сверхплотный шар. Он настолько плотен, что обычный распад нейтрона в нем оказывается запрещенным. Это и есть Нейтронная звезданейтронные звезды.

Сравнительно недавно (в 1968 г.) были обнаружены еще одни небесные объекты, являющиеся источниками переменного радиоизлучения, причем пульсация происходит с большой частотой (около одного колебания в секунду), которые получили название пульсаров. Голд Т.Голдом была предложена модель, согласно которой пульсар - это вращающаяся нейтронная звезда. Время жизни пульсара - 108 лет. Механизм возникновения переменного излучения по этой модели состоит в следующем. Электроны и протоны захватываются сверхсильным магнитным полем звезды. Вместе со звездой вращаются магнитное поле и захваченные им частицы (рис. Рис. 1.6.10. Модель пульсара, предложенная Голдом.). Вблизи внешней границы Плазмаплазмы, которая удерживается этим магнитным полем, частицы движутся со скоростями, близкими к световой. Согласно квантовой электродинамике, они испытывают ускорение и, следовательно, излучают. Это ускорение очень большое, и интенсивность излучения поэтому велика. Следствием релятивистского характера движения частиц является то, что излучение в основном испускается вдоль направления движения частиц. Поскольку вращение происходит вместе с магнитным полем звезды, то она излучает как «прожектор», луч которого обегает небо. При каждом обороте пульсара на Земле наблюдается вспышка.

Также недавно, в 1972 г., экспериментально были обнаружены космические гамма-всплески, когда американцы запустили спутник «Вела» с целью обнаружить, не производят ли русские тайные испытания ядерных устройств, при которых должны возникать кратковременные всплески гамма-излучения большой энергии. Однако оказалось, что такие всплески длительностью порядка секунды происходят примерно раз в сутки, но их источники равномерно распределены по всему небу и происходят где-то в дальнем КосмосКосмосе. Предполагается, что такой гамма-всплеск происходит при слиянии пары Нейтронная звезданейтронных звезд, падении нейтронной звезды на Черная дырачерную дыру или слиянии двух черных дыр. При этом выделяется гигантская энергия порядка 1046-1047 эрг в области 10-100 км за время около секунды.

В ноябре 1999 г. в научной печати появилось сообщение об экспериментах на релятивистском коллайдере (ускорителе-сталкивателе тяжелых ионов, в котором частицы разгоняются до скорости, равной 0,99 скорости света) в Брукхевенской национальной лаборатории (США) по получению кварк-глюонной плазии, т.е. такого состояния вещества Вселенной, в котором она находилась в первые мгновения после БВ. Другими словами, можно рукотворно на Земле осуществить этот Большой Взрыв! Это вызвало неоднозначную реакцию даже среди профессионалов-физиков.

Дело в том, что в таких условиях как раз может возникнуть материя из «странных» кварков, начнется неконтролируемая реакция по превращению всей нашей «земной» материи в «странную материю», в новое состояние со сверхплотным веществом и температурой в триллион градусов, и в итоге может образоваться черная дыра. Если теоретики не ошибаются, что рождению Вселенной предшествовал БВ, а экспериментаторы могут воссоздать его на Земле, то об успешности такого моделирования судить уже придется не нам!

Мы уже говорили в связи с проблемой CETI, что молчание далеких цивилизаций и вспышки сверхновых звезд приводят к мысли, что, вероятно, на каком-то уровне знаний уже находились энтузиасты, которым не терпелось побыстрее узнать правду о зарождении Вселенной и даже посоревноваться с природой. Результатом такой спешки и могли быть очередные Черная дырачерные дыры во Вселенной.

В связи с классификацией звезд и происходящих в них атомных и ядерных процессов и испусканием различных излучений остановимся кратко на неоптических методах наблюдений астрофизических объектов. Эти методы наблюдений возникли из-за того, что видимый свет, как мы видели на примере «скрытой» массы, несет не всю информацию о том, что происходит в Космосе. Инфракрасное и рентгеновское излучение сильно поглощаются атмосферой Земли. НейтриноНейтрино вообще слабо взаимодействует с веществом. Поэтому для исследования инфракрасного и рентгеновского излучений используют ракеты и спутники, а для наблюдения нейтрино строят глубокие шахты, чтобы максимально защитить детекторы от фона. Например, такая лаборатория до недавнего времени была у нас в Баксанском ущелье на Кавказе. Имеются также проекты использования для этой цели толщи вод Байкала. Правда особых успехов в регистрации нейтрино пока нет. Методами радиоастрономии были обнаружены радиоисточники в нашей галактике, часть которых (около 200) удалось отождествить с видимыми галактиками или звездами. Первый внегалактический источник, расположенный в созвездии Лебедь, обнаружен в 1948 г.

В начале 60-х годов были обнаружены такие радиоисточники, которые оказались связанными не с обычными радиогалактиками, а с необычными голубого цвета объектами, напоминающими звезды. Так как они малы по сравнению с размерами галактик, их назвали квазизвездными объектами или кратко квазарами. Природа их происхождения и строения в настоящее время не ясна. Однако, наблюдая их спектры, обнаружили у них исключительно большие красные смещения. А это, как нам уже известно, связывается с расширением Вселенной. Поэтому можно предполагать, что квазары - наиболее удаленные и быстродвижущиеся объекты во Вселенной. Кроме того, чтобы отдельная квази-звезда имела яркость квазара, она должна излучать фантастическое количество энергии, коло 1046-1047 эрг/с, что в 1012-1013 раз превышает энергию излучения Солнца. В таких условиях квазар за месяц должен испускать количество энергии, соответствующую массе Солнца. Для объяснения такой огромной мощности расхода энергии квазары должны иметь массу, в 109 раз превышающую массу Солнца.

На основе изложенных выше положений постнеклассической физики можно сделать некоторые обобщения относительно эволюции Вселенной. В современном представлении Пространствопространство не есть однородное и изотропное пустое вместилище материальных объектов, как это предполагалось в классическом естествознании. Пространство взаимодействует с материальными объектами, находящимися в нем, и искривляется вблизи гравитирующих масс. Гравитационное поле выступает как искривление четырехмерного пространства-времени, и в упомянутой модели геометродинамики искривление пространства сложной топологии порождает все многообразие материального мира.

Заметим также, что в теории раздувающейся Вселенной (РВ), связанной, как мы говорили, с возникновением материального мира из Вакуумвакуума, также считается, что Вселенная и галактики разбегаются не в пустом абсолютном пространстве классической механики, а в пространстве, которое саморасширяется. С таким пространством оказывается связанным и более глубокое понимание вакуума как совокупности виртуальных состояний, виртуальных пар с бесконечной плотностью энергии. В современной квантовой теории показывается, что существует множество вакуумов, которые реализуются с помощью Спонтанныйспонтанного нарушения симметрии. Из хаоса материальных частиц и процессов Природаприрода гармонично выстраивает свой порядок в мире. В этом смысле элементарные частицы оказываются продуктами Самоорганизациясамоорганизации физического вакуума.

По существу все модели происхождения Вселенной связаны с процессами самоорганизации материи, затрагивающими огромное множество явлений и процессов в окружающем нас мире, независимо от нас и по своим еще не до конца познанным Законзаконам. СинергетикаСинергетика в этом отношении помогает нам осознать, что материальный и духовный мир - это мир самоорганизующихся систем, мир нелинейных процессов, мир кооперативных явлений. Более глубокий взгляд на все сущее в мире приводит к пониманию, что мир вокруг нас является нелинейным, а классическая физика видела это мир, как говорится, через линейные очки. Расширяя границы нашего Знаниезнания, мы не должны «навязывать» Природе свои законы, удобные и понятные нам, может быть, не свойственные природе. Используя не опровергнутые физические законы, разрабатывая новые модели, мы приходим на новом витке знаний к пониманию того, что наш мир холистичен и познавать его надо с этих позиций.

Что касается физики Вселенной, то можно сказать, что в настоящее время мы имеем о ней некоторые представления, накопили много сведений о конкретных физических явлениях, тем не менее ощущается, что вопросов больше, чем ответов. Постановка важного и правильно сформулированного вопроса означает шаг по пути познания законов Природы, так как мы начинаем понимать, в каком направлении нам двигаться и как искать эти ответы. Несомненно, в будущем мы получим еще больше ответов, в том числе и на те вопросы, которые мы здесь кратко обсуждали, но, естественно, что мы встретимся и с новыми фундаментальными проблемами. Однако в этом - сущность научного познания мира, в том числе и на основе физики. В этом и очарование той же физики.

Контрольные вопросы к главе 1.6

© Центр дистанционного образования МГУП