Московский государственный университет печати

Горбачев В.В.


         

Концепции современного естествознания. В 2 ч.

Учебное пособие


Горбачев В.В.
Концепции современного естествознания. В 2 ч.
Начало
Печатный оригинал
Об электронном издании
Оглавление
1.

Часть I

Предисловие

1.1.

Введение

1.1.1.

Этапы развития и становления естествознания

1.1.2.

Общие проблемы естествознания на пути познания Мира

1.2.

Механика дискретных объектов

1.3.

Физика полей

1.4.

Теория относительности Эйнштейна - мост между механикой и электромагнетизмом

1.4.1.

Физические начала специальной теории относительности

1.4.2.

Общая теория относительности

1.5.

Основы квантовой механики и квантовой электродинамики

1.6.

Физика Вселенной

1.6.1.

Модели происхождения Вселенной

1.6.2.

Современные модели элементарных частиц как первоосновы строения материи Вселенной

1.6.3.

Фундаментальные взаимодействия и их мировые константы

1.6.4.

Модель единого физического поля и многомерность пространства-времени

1.6.5.

Устойчивость Вселенной и антропный принцип

1.6.6.

Ньютоновская модель развития Вселенной

1.6.7.

Антивещество во Вселенной и антигалактики

1.6.8.

Механизм образования и эволюции звезд

1.7.

Проблема «порядок-беспорядок» в природе и обществе

1.8.

Симметрия и асимметрия в их различных физических проявлениях

1.9.

Современная естественнонаучная картина мира с точки зрения физики

2.

Часть II. Физика живого

Введение

2.1.

От физики существующего к физике возникающего

2.1.1.

Термодинамические особенности живых систем

2.1.2.

Энергетический подход к описанию живого

2.1.3.

Уровни организации живых систем и системный подход к эволюции живого

2.1.4.

Физическая интерпретация биологических законов

2.1.5.

Пространство и время для живых организмов

2.1.6.

Энтропия и информация в живых системах

2.2.

Физические аспекты и принципы

2.2.1.

От атомов к протожизни

2.2.2.

Химические процессы и молекулярная самоорганизация

2.2.3.

Биохимические составляющие живого вещества

2.2.4.

Клетка как «элементарная частица» молекулярной биологии

2.2.5.

Роль асимметрии в возникновении живого

2.3.

Физические принципы воспроизводства и развития живых систем

2.3.1.

Информационные молекулы наследственности

2.3.2.

Воспроизводство и наследование признаков

2.3.3.

Процессы мутагенеза и передача наследственной информации

2.3.4.

Матричный принцип синтеза информационных макромолекул и молекулярная генетика

2.4.

Физическое понимание эволюционного и индивидуального развития организмов

2.4.1.

Онтогенез и филогенез. Онтогенетический и популяционный уровни организации жизни

2.4.2.

Физическое представление эволюции. Синтетическая теория эволюции

2.4.3.

Аксиомы биологии

2.4.4.

Признаки живого и определения жизни

2.4.5.

Физическая модель демографического развития С.П. Капицы

2.5.

Физические и информационные поля биологических структур

2.5.1.

Физические поля и излучения функционирующего организма человека

2.5.2.

Механизм взаимодействия излучений человека и окружающей среды и возможности медицинской диагностики и лечения

2.5.3.

Устройство памяти. Воспроизводство и передача информации в организме

2.6.

Физические аспекты биосферы и основы экологии

2.6.1.

Структурная организованность биосферы

2.6.2.

Биогеохимические принципы В.И. Вернадского и живое вещество

2.6.3.

Физические аспекты эволюции биосферы и переход к ноосфере

2.6.4.

Физические факторы влияния Космоса на земные процессы

2.6.5.

Физические основы экологии

2.6.6.

Принципы устойчивого развития

Контрольные вопросы

Литература

Темы курсовых работ, рефератов и докладов

Вопросы к зачету и экзамену

Словарь терминов

Указатели
690   именной указатель
3016   предметный указатель
58   указатель иллюстраций
Рис. 1.8.1. Зеркальная симметрия молекул воды (а) и бутилового спирта (б).

Состояние равновесия должно
быть, по-видимому, симметричным

Г. Вейль

Природа менее симметрична,
чем можно было бы ожидать,
исходя из уравнений
классической и квантовой
физики.

И. Пригожин

Понятия симметрии и противоположного ей объективного свойства природы асимметрии являются одними из фундаментальных в современном естествознании. Поэтому научные исследования общеглобального характера в значительной степени основываются на рассмотрении указанных понятий. Как уже указывалось ранее, негласный лозунг физиков-теоретиков «правильная теория должна быть красивой» находит свое место в построении новых теоретических моделей и связан зачастую с симметрийными представлениями, а эстетический фактор играет при этом не последнее значение.

Интуитивно симметрия в своих простых формах понятна любому человеку и часто мы выделяем ее как элемент прекрасного и совершенного. В известной мере симметрия отражает степень упорядоченности системы. Например, окружность, ограничивающая каплю на плоскости, более упорядочена, чем размытое пятно на этой же площади, и следовательно, более симметрична. Поэтому можно связать изменение Энтропияэнтропии как характеристики упорядочения с симметрией: чем более организовано вещество, тем выше симметрия и тем меньше энтропия.

Одно из определений понятий симметрии и асимметрии дал Готт В.С.В. Готт [ссылка на источники литературы]: симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. если хотите, некий элемент гармонии. АсимметрияАсимметрия - понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия и это связано с изменением, развитием системы. Таким образом и из соображений симметрии-асимметрии мы приходим к выводу, что развивающаяся динамическая система должна быть неравновесной и несимметричной. В ряде случаев симметрия является достаточно очевидным фактом. Например, для определенных геометрических фигур нетрудно увидеть эту симметрию и показать ее путем соответствующих преобразований, в результате которых фигура не изменит своего вида.

Однако в общем смысле понятие симметрии гораздо шире и ее можно понимать как неизменность (инвариантность) каких-либо свойств объекта по отношению к преобразованиям, операциям, выполняемым над этим объектом. Причем это может быть не только материальный объект, но и закон, математическая формула или уравнения, в том числе и Нелинейные уравнениянелинейные, которые, как мы уже знаем из разд. 1.7, играют большую роль в самоорганизующихся процессах.

Дать более конкретное определение симметрии, чем у Готта, в общем случае затруднительно еще и потому, что она принимает свою форму в каждой сфере человеческой деятельности. Как мы обсуждали только что в предыдущем разделе, в искусстве симметрия может проявиться в соразмерности и взаимосвязанности, гармонизации отдельных частей в целом произведении. Что касается математических построений, то там также имеют место симметричные многочлены, которые можно использовать для существенного упрощения решения алгебраических и дифференциальных уравнений [ссылка на источники литературы]. Особенно полезным оказалось использование симметрийных представлений в теории групп с введением инварианта, т.е. такого преобразования, когда соотношения между переменными не изменяются. Отражением связи пространства, симметрии и законов сохранения может служить мысль великого французского математика Пуанкаре Ж.А.А. Пуанкаре: «Пространство - это группа».

Наиболее наглядное и непосредственное применение идей симметрии имеет место в кристаллографии и физике твердого тела, изучающих физические свойства кристаллов в зависимости от их строения. Даже непосвященному человеку хорошо видна здесь Ассоциацияассоциация с неким совершенством, порядком и гармонией. Симметрия является для мира кристаллов естественной базой их физической сущности. Один из создателей современной физики твердого тела Займен Дж.Дж. Займен вообще считал, что вся теория твердых тел основана на трансляционной симметрии. Здесь симметрия проявляется при совмещении геометрических тел, например правильных многогранников при повороте их в пространстве на определенные углы, а также при перемещениях в атомной решетке на определенные величины векторов трансляции, кратных периоду решетки:

<?xml version="1.0" encoding="UTF-16"?>
(1.8.1)

где - <?xml version="1.0" encoding="UTF-16"?>
вектор обратной решетки реального кристалла, <?xml version="1.0" encoding="UTF-16"?>
= 1/a (a - период решетки), <?xml version="1.0" encoding="UTF-16"?>
- волновой вектор.

Более глубокое понимание и применение симметрии связано, как мы уже рассматривали в главе 1.2, с изучением и обоснованием законов сохранения, отражающих фундаментальные свойства пространства-времени. Напомним, что симметрия относительно произвольного сдвига во времени приводит к Закон сохранения энергиизакону сохранения энергии для консервативных (замкнутых) систем

E = const. (1.8.2)

Неизменность характеристик физической системы при произвольном перемещении ее как целого в пространстве на произвольный вектор приводит к закону сохранения импульса

P = mv = const, (1.8.3)

И, наконец, симметрия относительно произвольных пространственных поворотов (изотропность пространства) связана с законом сохранения момента импульса

<?xml version="1.0" encoding="UTF-16"?>
(1.8.4)

Так как категория симметрии относится к любому объекту или понятию, то она в полной мере применяется, например, к физическому закону. А поскольку суть физического Законзакона - нахождение и вычисление идентичного в явлениях, то для инерциальных систем, согласно принципу относительности Галилей Г.Галилея, эти физические законы будут во всех системах одинаковы. Следовательно, они инвариантны относительно описания явлений как в одной инерциальной системе, так и другой и тем самым сохраняют симметрию, В 1918 г. были доказаны теоремы Нетер Э.Нетер, смысл одной из которых состоит в том, что различным симметриям физических законов соответствуют определенные законы сохранения. Эта связь является настолько всеобщей, что ее можно считать наиболее полным отображением понятия сохранения Субстанциясубстанций и законов, их описывающих, в природе. Как сказал Фейнман Р.Р. Фейнман: «Среди мудрейших и удивительных вещей в физике эта связь - одна из самых красивых и удивительных».

Различие видов симметрии связано с разными способами пространственно-временного преобразования одной инерциальной системы в другую инерциальную систему. Остановимся на этом несколько подробнее. Каждому такому пространственно-временному преобразованию соответствует определенный вид симметрии. Так, перенос начала координат в произвольную точку пространства при неизменности физических свойств связан с симметрий таких преобразований (это как раз и есть трансляционная симметрия) и означает физическую эквивалентность всех точек пространства, т.е. его однородность.

Поворот координатных осей в пространстве связан с физической эквивалентностью разных направлений в пространстве и означает изотропность пространства. Симметрия относительно переноса во времени связана с физической эквивалентностью различных моментов времени, что должно также отражать идею независимости хода времени от его начала (время протекает одинаково). Откуда, кстати, следует, что однородность времени проявляется в его равномерном течении. Такое заключение позволяет полагать, что относительная скорость всех процессов, протекающих в природе, одинакова. Этот факт равномерности течения времени был установлен экспериментально с точностью до 10-14 с за период ~10 миллионов лет. В качестве примера можно привести тот факт, что спектральный состав излучения атомов звезд, испущенного миллионы лет тому назад и воспринимаемого нами только сейчас, такой же, как спектральный состав таких же атомов на Земле.

В классической релятивистской механике симметрия выражается в принципе относительности. Равномерное и прямолинейное движение системы отсчета, в принципе любого тела, с произвольной скоростью, но меньшей, чем скорость света <?xml version="1.0" encoding="UTF-16"?>
, связано с симметрией и физической эквивалентностью такого движения и покоя. Это подтверждается уже рассмотренным экспериментальным примером неразличимости параметров движения объекта в движущемся равномерно и прямолинейно поезде и поезде, стоящем неподвижно на путях. Как мы знаем, при скоростях <?xml version="1.0" encoding="UTF-16"?>
используются упомянутые ранее принцип относительности и преобразования Галилей Г.Галилея, при v ~ c (релятивистские скорости) - принцип относительности Эйнштейн А.Эйнштейна и преобразования Лоренц Э.H.Лоренца. Такого рода симметрию (неразличимость покоя и равномерно-прямолинейного движения) можно условно определить как изотропию пространства-времени. Эти виды симметрии объединяются в СТО в единую симметрию четырехмерного пространства-времени.

Заметим также, что проблемы симметрии-асимметрии оказываются связанными между собой глубже, чем это кажется исходя из бинарной структуры этих понятий (да-нет). В качестве примера можно привести состояние человека во вращающейся центрифуге. Есть симметрия вращения (поворота), но относительность покоя и вращательного движения нарушается и человек в такой центрифуге по своему состоянию (вестибулярные ощущения) может определить, что его вращающаяся закрытая (герметизированная) камера на центрифуге вращается. Таким образом, возникает ситуация, при которой физические законы не инвариантны относительно вращения, т.е. налицо асимметрия.

То же можно сказать и о так называемых преобразованиях Подобиеподобия, связанных с изменением масштабов физических систем. Асимметрия относительно масштабных преобразований связана с тем, что порядок размеров атомов имеет одинаковое для всей Вселенной значение (~10-10 м). И если мы будем уменьшать размеры, например изделий микроэлектроники, в том числе и пленочных, то характер поведения электронов в них изменится (возникают размерные эффекты), т.е. опять-таки может возникнуть асимметричность процессов при таких размерах. Другой пример несимметрии относительно масштабов в Биологиябиологии приводит Свистунов Б.Л.Б. Свистунов [ссылка на источники литературы]: несмотря на похожесть окраски, нельзя, например, раскормить осу до размеров тигра, так как при массе 10-100 кг она потеряет способность летать - возникает другое качество.

В связи с этими примерами имеет смысл рассмотреть другие виды симметрии. Упомянутые выше пространственно-временные симметрии условно объединяет одно общее свойство - они являются как бы «внешними» симметриями в том смысле, что отражают глубокие свойства структуры пространства-времени, представляющей собой форму существования любого вида материи, и поэтому справедливой для любых мыслимых взаимодействий и физических процессов. Весь физический опыт познания мира показывает отсутствие нарушений инвариантности законов природы относительно указанных пространственно-временных преобразований. В этом уже не только физический, но и философский смысл познания и установления объективности законов природы.

Однако во «внешних» симметриях не затрагивается «внутренний мир» физического объекта и он никак не связан с внешними свойствами. В природе кроме рассмотренных Закон сохранения энергиизаконов сохранения энергии, импульса и момента импульса существуют и другие законы сохранения, которые выполняются с той или иной степенью общности, в частности закон сохранения электрического заряда. В физике элементарных частиц, как мы видели, имеются и другие сохраняющиеся (или по крайней мере введенные так) величины, подобные электрическому заряду, - барионное число, четность, изоспин, ароматы (Странностьстранность, Очарованиеочарование, Красотакрасота и т.д.). Эти по сути Квантовые числаквантовые числа обусловлены фазовыми преобразованиями волновой функции ψ и в целом не связаны со свойствами пространства-времени. Симметрия играет важную роль в исследовании физики микромира. Наш физик-теоретик Мигдал А.Б.А. Мигдал считал, что главными направлениями физики XX века были поиски симметрии и единства картины мира [ссылка на источники литературы].

Сохранение подобных величин, непосредственно не связанных со свойствами пространства-времени, относится к понятию «внутренней» симметрии. Остановимся на законе сохранения электрического заряда. Смысл его в том, что сохраняется во времени алгебраическая сумма зарядов любой электрической изолированной системы. Математическом смыслом закона сохранения заряда является уравнение непрерывности

<?xml version="1.0" encoding="UTF-16"?>
(1.8.5)

где j - плотность тока, ρ - объемная плотность заряда. Физический смысл этого уравнения состоит в том, что div j - расходимость тока (его движение) - связана с изменением во времени, т.е. перемещением электрического заряда. Электрический ток - направленное движение свободных электрических частиц. Физический смысл (1.8.5) отражает факт несотворимости и неуничтожимости электрического заряда.

Нужно подчеркнуть, что сохранение электрического заряда в изолированных (замкнутых) системах не сводится к сохранению числа заряженных частиц. Так при β-распаде Нейтроннейтрона, не имеющего заряда, <?xml version="1.0" encoding="UTF-16"?>
возникают ρ (с зарядом e+), электрон (заряд e-) и Антинейтриноантинейтрино, также не имеющее заряда. В этой реакции появились две электрически заряженные частицы, но их суммарный заряд равен нулю, как и у породившего их нейтрона. Отметим, что важным следствием закона сохранения заряда является устойчивость электрона. Электрон является самой легкой электрически заряженной частицей. Поэтому ему просто не на что распадаться так как в этом случае нарушился бы закон сохранения электрического заряда. По современным представлениям время жизни электрона не менее 1019 лет, что говорит в пользу этого закона.

Прежде чем перейти к другим «внутренним» симметриям, остановимся еще на двух видах дискретной симметрии, которые отличаются от рассмотренных «непрерывных» симметрий сдвига и поворота. Это хорошо известная всем нам уже давно зеркальная симметрия, которая описывается пространственной Инверсияинверсией, т.е. отражением системы координатных осей. Инверсия пространства осуществляется «сразу» (в зеркале), а ее повторное применение возвращает систему в исходное состояние. Это отражение называется операцией изменения «четности» (пример с теннисистом в зеркале). Другой дискретной симметрией является симметрия относительного обращения времени, приводящая к тому, что в симметричной Вселенной Законзаконы природы не изменяются при замене направления течения времени на обратное (t = -t и наоборот). Применение данной симметрии показывает, что направление возрастания времени (движение в одну сторону) не играет существенной роли. С равной вероятностью возможен и обратный процесс. Другими словами, установить путем наблюдения направление развития событий, в будущее или в прошлое, для равновесной симметричной системы невозможно. Если вы помните, мы приходили к такому же результату для детерминированной механики Галилея - Ньютона в замкнутых системах. Но одновременно мы уже знаем и о существовании «стрелы времени» для открытых неравновесных систем. И это еще раз показывает неумолимо, что время все-таки «течет» от прошлого к будущему и наша Вселенная неравновесна и асимметрична. Заметим однако, что понятие энтропии не однозначно применимо к микромиру, и, следовательно, изучая его, нельзя установить направление времени.

Дальнейшее расширение количества физических симметрий связано с развитием квантовой механики. Одним из специальных видов симметрии в микромире является Симметрия перестановочная перестановочная симметрия. Она основана на принципиальной неразличимости одинаковых микрочастиц, которые, как мы знаем из главы 1.5, движутся не по определенным траекториям, а их положения оцениваются по вероятностным характеристикам, связанным с квадратом модуля волновой функции |ψ|2. Перестановочная симметрия и заключается в том, что при «перестановке» квантовых частиц не изменяются вероятностные характеристики, квадрат модуля волновой функции - величина постоянная |ψ|2 = const.

Исследование реакций с участием элементарных частиц и Античастицыантичастиц, а также процессов их распада привело к открытию некоторых новых свойств симметрии, а именно Симметрия зарядовая зарядовой симметрии, или, более точно, зарядовой симметрии частиц и античастиц. При изучении ядерных взаимодействий Нуклоннуклонов (сильные взаимодействия) было обнаружено, что эти ядерные силы почти не зависят от типа нуклонов, т.е. при этих взаимодействиях нет различия между Нейтроннейтроном и протоном, оба они есть два состояния одной частицы - нуклона. Аналогично, μ-мезон может находиться в трех состояниях, соответствующих трем различным частицам. Такие состояния называются изотопическими и они характеризуются изотопическим Спинспином или Изоспинизоспином. Симметрия, связанная с этими процессами, и получила название Симметрия изотопическая изотопической симметрии.

С теорией элементарных частиц, типами взаимодействия полей и попыткой введения единого поля связаны еще два вида симметрии: кварк-лептонной и калибровочной. Симметрия кварк-лептонная Кварк-лептонная симметрия проявляется в единой теории поля. Считается, что по существу Кваркикварки и лептоны не различимы в области очень больших энергий. Но в случае Спонтанныйспонтанного нарушения симметрии и в области низких энергий они приобретают совершенно различные свойства. Тем самым установлено, что между кварками и лептонами возможны переходы. Этот факт может служить еще одним убедительным доказательством единства природы.

Симметрия калибровочная Калибровочная симметрия связана с масштабными преобразованиями, представляющими сдвиги нулевых уровней скалярного и векторного потенциалов полей. Сам термин «калибровочное поле» (преобразование, инвариантность) выдвинул немецкий математик Вейль Г.Г. Вейль. Смысл идеи состоит в том, что физические законы не должны зависеть от масштаба длины, выбранного в пространстве, и не должны изменять свой вид при замене этого масштаба на любой другой. С обычной логикой это вроде бы самоочевидно: почему действительно законы Ньютона будут другими, если мы будем измерять путь в метрах, сантиметрах или в Парсекмегапарсеках. Однако значение изменения масштаба состоит в том, что оно имеет принципиально не физический характер, так как не вызвано какими-либо физическими воздействиями, а геометрический, в частности, изменение длины обусловлено лишь особенностями структуры пространства-времени. Тем самым пространство-время перестает быть лишь пассивным резервуаром вещества и поля, где происходят физические процессы, оно само начинает активно влиять на эти процессы. Геометрия приобретает динамический характер.

Особое значение приобретает принцип калибровочной инвариантности, если преобразования приходят локально в каждой точке пространства-времени и неоднородно, т.е. с изменяющимся соотношением от точки к точке. Вот это преобразование Г. Вейль и назвал масштабным или калибровочным. Его формулировка звучит так: все физические законы инвариантны относительно произвольных (однородных и неоднородных) локальных калибровочных преобразований. В таком виде принцип Вейля является по существу развитием общего принципа относительности Эйнштейна, что все физические законы в любой системе отсчета (инерциальной и неинерциальной) должны иметь одинаковый вид. Уместно в связи с этим заметить, что теория Эйнштейна была первой теорией, в которой геометрический фактор (искривление пространства-времени) напрямую связывался с физической характеристикой (гравитационной массой), что послужило в настоящее время дальнейшему развитию идей геометродинамики [ссылка на источники литературы]. Эти преобразования масштаба оставляют силовые характеристики поля (например Е и В для электромагнитного поля) неизменными. На основе калибровочной симметрии построены теории электрослабого и электросильного взаимодействий. Из этой симметрии следует, что частицы, обладающие определенными свойствами, которые объединяются понятиями «заряда» (электрический, барионный, лептонный), «цвета» кварков, являются источниками полей, если хотите, материальными носителями этих полей.

Вопросы симметрии играют решающую роль в современной физике. Динамические законы природы характеризуются определенными видами симметрии. В общем смысле под симметрией физических законов подразумевают их инвариантность по отношению к определенным преобразованиям. Необходимо также отметить, что рассмотренные типы симметрий имеют, естественно, определенные границы применимости. Например, симметрия правого и левого существует только в области сильных электромагнитных взаимодействий, но нарушается при слабых. Изотопическая инвариантность справедлива только при учете электромагнитных сил. Для применения понятия симметрии в физике можно ввести некую структуру, учитывающую четыре фактора.

  1. Объект или явление, которое исследуется.

  2. Преобразование, по отношению к которому рассматривается симметрия.

  3. Инвариантность каких-либо свойств объекта или явления, выражающая рассматриваемую симметрию. Связь симметрии физических законов с законами сохранения.

  4. Границы применимости различных видов симметрии.

Заметим также, что изучение симметричных свойств физических систем или законов требует привлечения специального математического анализа, в первую очередь, представлений теории групп, наиболее развитой в настоящее время в физике твердого тела и кристаллографии.

В целом же из законов сохранения, которые, как мы уже поняли, являются следствием пространственно-временной симметрии законов самой природы, следует условность разделения физики на механику, термодинамику, электродинамику и т.д. и, следовательно, налицо неразрывность единства всей природы.

Не останавливаясь здесь более подробно на понятиях физики живого, чему будет посвящена специально вторая часть данного курса, рассмотрим идеи симметрии-асимметрии применительно к проблемам объектов Природа живаяживой и Природа неживаянеживой природы. По существу это философский, если хотите, но с естественнонаучной точки зрения вопрос о возникновении, развитии и сущности жизни. Чем отличаются молекулы живых веществ от неживых? В какой-то мере это связано с симметрией, точнее зеркальной симметрией. Если рассмотреть пример [ссылка на источники литературы] зеркального изображения двух молекул неорганического вещества воды и органического, но «неживого» вещества - бутилового спирта (рис. Рис. 1.8.1. Зеркальная симметрия молекул воды (а) и бутилового спирта (б).), то принципиальное различие проявляется в том, что молекула Н2О зеркально симметрична, а молекула спирта зеркально асимметрична.

«Левая» и «правая» молекулы, не совпадают как левая и правая рука человека. Асимметричные молекулы в химии называют стереоизомерами, а само свойство зеркальной асимметрии носит название киральности или Хиральностьхиральности (от греческого слова «кир» - рука). Так вот, выяснилось, что в природе хиральностью обладают и «живые», и «неживые» молекулы, но «живые» всегда только хиральны, причем «неживые» хиральные молекулы равновероятно встречаем и в левом, и в правом варианте, а «живые» - только или в левом, или в правом. В этом смысле молекулы живых организмов хирально чисты. Так, ориентация ДНК-спирали всегда правая. В свое время Пастер Л.Л. Пастер, а затем и Вернадский В.И.В.И. Вернадский предлагали на этом принципиальном различии провести раздел между живой и неживой природой. Предполагают, что основополагающим признаком возникновения и развития жизни и является способность живых организмов извлекать и конструировать из симметричных и хирально нечистых молекул Окружающая средаокружающей среды хирально чистые молекулы, необходимые для живого организма. Примером может служить извлечение растениями из симметричных молекул воды и углекислого газа в процессе Фотосинтезфотосинтеза асимметричных молекул крахмала и сахара. Наряду с другими питательными веществами эти молекулы поступают в пище живых организмов и из них образуются уже хирально чистые молекулы. Если хиральность молекул веществ пищи изменится на противоположную, то эти вещества окажутся для живого организма биологическим ядом, они отторгаются организмом, ведут его к гибели. Это достаточно характерный пример того, как исходя из симметрийных представлений физики мы можем объяснить, если хотите, происхождение живой материи и даже дать рекомендации практической медицине.

В общем смысле мы можем считать, что и возникновение жизни в целом связано со Спонтанныйспонтанным нарушением имевшейся до того в природе зеркальной симметрии. Предполагается, что асимметрия возникла скачком в результате Большого Биологического взрыва, по аналогии с БВ, в результате которого образовалась Вселенная, под действием радиации, температуры, полей и т.д. и нашла свое отражение в генах живых организмов. Этот процесс по существу также является процессом самоорганизации, который мы рассматривали в подразд. 1.7. В какой-то точке Бифуркациябифуркации произошел и самоорганизующий акт возникновения уже живой материи.

Уместно теперь связать симметрию с Энтропияэнтропией живых организмов. Переход вещества на более высокую степень организации, упорядоченности, как мы уже отмечали, снижает энтропию как меру хаотичности. Но наибольшей симметрией обладает как раз равновесное хаотическое состояние. Значит, уменьшение энтропии неизбежно приводит к уменьшению симметрии, т.е. увеличению асимметрии живых организмов. Чем выше уровень организации материи, тем меньше энтропия и симметрия. Но для снижения энтропии живых организмов как открытых систем, обменивающихся энергией и материей (пища и отправления) с окружающей средой, необходима энергия, причем значительная, которая, как мы увидим далее, вырабатывается в соответствующих частях клеток (митохондриях) живых организмов за счет пищи, т.е. поглощения энергии внешней среды (Солнца и Биосферабиосферы).

Можно образно сказать, что мы забираем от природы более организованную структурированную материю, обладающую меньшей энтропией, т.е. подпитываем себя Негэнтропиянегэнтропией (отрицательной энтропией), а отдаем ей неструктурированную материю, обладающую большей энтропией. «Питаемся» так сказать, с энергетической физической точки зрения, отрицательной энтропией, а отдаем положительную энтропию. И когда в естественных условиях этот баланс нарушается, то наступает некоторое динамическое равновесие - обмен энтропией между человеком и Окружающая средаокружающей средой стабилизируется, энтропия системы человек - окружающая среда возрастает, и живой организм гибнет (энтропия его возросла). Поэтому биологическая смерть организма - это рост энтропии до ее уровня в окружающей среде. Повышение же энергетического потенциала в живом организме при «нормальном» обмене энтропией его с окружающей средой увеличивает химическую активность клеток и дает возможность самовоспроизведения и развития.

Можно сказать, что по мере упорядочения живых организмов, их усложнения в ходе развития жизни асимметрия все больше и больше превалирует на симметрией, вытесняя ее из биохимических и физиологических процессов. Однако и здесь имеет место динамический процесс: симметрия и асимметрия в функционировании живых организмов тесно связаны. Внешне человек и животные симметричны, однако их внутреннее строение существенно асимметрично. Если у низших биологических объектов, например низших растений, размножение идет симметрично, то у высших имеет место явная асимметрия - разделение полов, где каждый пол вносит в процесс самовоспроизведения свойственную только ему генетическую информацию. Так устойчивое сохранение наследственности есть проявление в известном смысле симметрии, а в Изменчивостьизменчивости проявляется асимметрия. В целом же глубокая внутренняя связь симметрии и асимметрии в живой природе обусловливает ее возникновение, существование и развитие.

Можно задаться вопросом, есть ли другие виды симметрии и связанные с ними законы сохранения. В чем состоит глубокое значение законов сохранения электрического заряда, лептонного и барионного чисел, странностей, изотопического Спинспина и т.д.? Как это связано со свойствами абстрактного пространства? В чем смысл наличия Черная дыра«черных дыр» как неких «пропускных пунктов» из нашего пространства, мира, в другой антимир? К сожалению, пока на эти вопросы мы ответа не имеем, хотя и хорошо, что современная наука дает возможность их задавать.

Правда, по поводу задаваемых вопросов существует следующий физический анекдот. Паули В.Паули очень любил задавать вопросы, на которые не всегда можно найти правильные ответы (их вообще могло и не быть!). Когда он умер, то продолжал свое любимое занятие на том свете. И там никто не мог ответить на его вопросы. Тогда он решил обратиться к Богу. Господь терпеливо и внимательно выслушал его и ответил: «Вся трудность, Паули, в том, что Вы задаете не те вопросы».

Контрольные вопросы к главе 1.8

© Центр дистанционного образования МГУП