Московский государственный университет печати

А.В. Ванников, Г.А. Бабушкин


         

Методы и средства научных исследований

Конспект лекций для студентов, обучающихся по специальности «Технология полиграфического производства»


А.В. Ванников, Г.А. Бабушкин
Методы и средства научных исследований
Начало
Об электронном издании
Оглавление

Методы и средства научных исследований

Методология науки

1.

Лекция 1

1.1.

Специфика научной деятельности

1.2.

Критерии научного знания

1.3.

Методы научного познания

2.

Лекция 2

2.1.

Средства научного познания

2.2.

Возникновение естествознания

2.3.

Структура научного знания

2.4.

Взаимосвязь теории и эксперимента

2.5.

Модели научного познания

2.6.

Научные традиции

3.

Лекция 3

3.1.

Научные революции

3.2.

Научные открытия

3.3.

Фундаментальные научные открытия

3.4.

Проблемы науки

3.5.

Идеалы научного знания

3.6.

Функции науки

3.7.

Научная этика

4.

Лекция 4

4.1.

Очистка веществ

4.2.

Методы очистки

4.3.

Основные экспериментальные методы исследования строения молекул

5.

Лекция 5

5.1.

Полярография и анодная вольтамперометрия

5.2.

Спектральные методы

5.3.

Электронные спектры поглощения и люминесценции

5.4.

Инфракрасные спектры поглощения

5.5.

Спектры комбинационного рассеяния

6.

Лекция 6

6.1.

Электронный парамагнитный резонанс (ЭПР).

6.2.

Ядерный магнитный резонанс (ЯМР)

7.

Лекция 7

7.1.

Фотоэлектронная спектроскопия (ФЭС)

7.2.

Масс-спектрометрия

7.3.

Спектрополяриметрия

7.4.

Эффект Холла

7.5.

Зондовая микроскопия

8.

Лекция 8

8.1.

Оценка точности физических измерений

8.2.

Основные правила действий с приближенными числами

8.3.

Нормальные случайные величины

8.4.

Среднее и истинное значение изменяемой величины. Типы ошибок

8.5.

Дисперсия

8.6.

Среднее и дисперсия совокупности среднеарифметических

8.7.

Оценка квадратичного отклонения по размаху

8.8.

Доверительные интервалы

9.

Лекция 9

9.1.

Подбор формул по данным эксперимента методом наименьших квадратов

10.

Литература

Указатели
20   указатель иллюстраций

Наука - это специфическая деятельность людей, главной целью которой является получение знаний о реальности. Знание - главный продукт научной деятельности. К продуктам науки можно отнести также стиль рациональности, который распространяется во все сферы деятельности людей; и различные приборы, установки и методики, применяемые за пределами науки, прежде всего в производстве. Научная деятельность является и источником нравственных ценностей.

Хотя наука ориентирована на получение истинных знаний о реальности, наука и истина не тождественны. Истинное знание может быть и ненаучным. Оно может быть получено в самых разных сферах деятельности людей: в обыденной жизни, экономике, политике, искусстве, в инженерном деле. В отличие от науки, получение знания о реальности не является главной, определяющей целью этих сфер деятельности (в искусстве, например, такой главной целью являются новые художественные ценности, в инженерном деле - технологии, изобретения, в экономике - эффективность, и т.д.).

Важно подчеркнуть, что определение 'ненаучный' не предполагает негативную оценку. Научная деятельность специфична. Другие сферы деятельности человека - обыденная жизнь, искусство, экономика, политика и др. - имеют каждая свое предназначение, свои цели. Роль науки в жизни общества растет, но научное обоснование не всегда и не везде возможно и уместно.

История науки показывает, что научное знание не всегда является истинным. Понятие 'научный' часто применяется в ситуациях, которые не гарантируют получение истинных знаний, особенно когда речь идет о теориях. Многие (если не большая часть) научные теории были опровергнуты в процессе развития науки.

Наука не признает паранаучные концепции: алхимию, астрологию, парапсихологию, уфологию, торсионные поля и т.п. Она не признает эти концепции не потому, что не хочет, а потому, что не может, поскольку, по выражению Т.Гексли, 'принимая что-нибудь на веру, наука совершает самоубийство'. А никаких достоверных, точно установленных фактов в таких концепциях нет. Возможны случайные совпадения. Однако, паранаучные концепции и объекты паранауки иногда могут трансформироваться в научные концепции и предметы науки. Для этого необходимы воспроизводимость результатов экспериментов, использование научных понятий при создании теорий и предсказательность последних. Например, алхимия как паранаука о превращении элементов нашла "продолжение" в современной научной области, связанной с радиоактивным превращением элементов.

По поводу такого рода проблем Ф.Бэкон писал так: 'И потому правильно ответил тот, который, когда ему показали выставленное в храме изображение спасшихся от кораблекрушения принесением обета и при этом добивались ответа, признает ли теперь он могущество богов, спросил в свою очередь: 'А где изображение тех, кто погиб после того, как принес обет?' Таково основание почти всех суеверий - в астрологии, в поверьях, в предсказаниях и тому подобном. Люди, услаждающие себя подобного рода суетой, отмечают то событие, которое исполнилось, и без внимания проходят мимо того, которое обмануло, хотя последнее бывает гораздо чаще'. Между тем, в настоящее время, как и прежде, имеется ряд труднообъяснимых явлений и объектов, которые из области паранауки или веры могут трансформироваться в предмет научного знания. Например, известная проблема "Туринской плащаницы". По преданию на ней сохранился отпечаток тела основателя христианской религии, причем природа этого отпечатка до сих пор была не известна. Результаты, научных исследований, полученные с использованием компьютерной обработки трехмерных изображений этого отпечатка и опубликованные в научной печати, однозначно показывают, что он возник в результате взаимодействия с тканью плащаницы мощного энергетического импульса, источник которого находился внутри плащаницы. Природа этого источника остается загадкой, требующей дальнейшего научного исследования.

Важные черты облика современной науки связаны с тем, что сегодня она является профессией. До недавнего времени наука была свободной деятельностью отдельных ученых. Она не была профессией и никак специально не финансировалась. Как правило, ученые обеспечивали свою жизнь за счет оплаты их преподавательской работы в университетах. Однако сегодня ученый - это особая профессия. В XX веке появилось понятие 'научный работник'. Сейчас в мире около 5 млн. людей профессионально занимаются наукой.

Для развития науки характерны противостояния различных направлений. Новые идеи и теории утверждаются в напряженной борьбе. М. Планк сказал по этому поводу: 'Обычно новые научные истины побеждают не так, что их противников убеждают и они признают свою неправоту, а большей частью так, что противники эти постепенно вымирают, а подрастающее поколение усваивают истину сразу'. Развитие науки происходит в постоянной борьбе различных мнений, направлений, борьбе за признание идей.

Каковы же критерии научного знания, его характерные признаки?

Одним из важных отличительных качеств научного знания является его систематизированность. Она является одним из критериев научности. Но знание может быть систематизированным не только в науке. Кулинарная книга, телефонный справочник, дорожный атлас и т.д. и т.п. - везде знание классифицируется и систематизируется. Научная же систематизация специфична. Для нее свойственно стремление к полноте, непротиворечивости, четким основаниям систематизации и, самое главное, внутренняя, научно обоснованная логика построения данной систематизации.

Научное знание как система имеет определенную структуру, элементами которой являются факты, законы, теории, картины мира. Отдельные научные дисциплины взаимосвязаны и взаимозависимы. Стремление к обоснованности, доказательности знания является важным критерием научности. Обоснование знания, приведение его в единую систему всегда было характерным для науки. Со стремлением к доказательности знания иногда связывают само возникновение науки. Применяются разные способы обоснования научного знания. Для обоснования эмпирического знания применяются многократные проверки, использование различных экспериментальных методов, статистическая обработка результатов экспериментов, обращение к однородным экспериментальным результатам и т.п. При обосновании теоретических концепций проверяется их непротиворечивость, соответствие эмпирическим данным, возможность описывать и предсказывать явления.

В науке ценятся оригинальные, 'сумасшедшие' идеи, позволяющие абсолютно по-новому взглянуть на известный круг явлений. Но ориентация на новации сочетается в ней со стремлением элиминировать из результатов научной деятельности все субъективное, связанное со спецификой самого ученого. В этом - одно из отличий науки от искусства. Если бы художник не создал своего творения, то его бы просто не было. Но если бы ученый, пусть даже великий, не создал теорию, то она все равно была бы создана, потому что представляет собой необходимый этап развития науки, является отражением объективного мира. Этим объясняется часто наблюдаемое одновременное создание определенной теории различными учеными. Гаусс и Лобачевский - создатели неэвклидовой геометрии, Пуанкаре и Эйнштейн - теории относительности и др.

Хотя научная деятельность специфична, в ней применяются приемы рассуждений, используемые людьми в других сферах деятельности, в обыденной жизни. Для любого вида человеческой деятельности характерны приемы рассуждений, которые применяются и в науке, а именно: индукция и дедукция, анализ и синтез, абстрагирование и обобщение, идеализация, описание, объяснение, предсказание, гипотеза, подтверждение, опровержение и пр.

Основными методами получения эмпирического знания в науке являются наблюдение и эксперимент.

Наблюдение - это такой метод получения эмпирического знания, при котором главное - не вносить при исследовании самим процессом наблюдения в изучаемую реальность какие-либо изменения.

В отличие от наблюдения, в рамках эксперимента изучаемое явление ставится в особые условия. Как писал Ф. Бэкон, 'природа вещей лучше обнаруживает себя в состоянии искусственной стесненности, чем в естественной свободе'.

Важно подчеркнуть, что эмпирическое исследование не может начаться без определенной теоретической установки. Хотя говорят, что факты - воздух ученого, тем не менее постижение реальности невозможно без теоретических построений. И.П.Павлов писал по этому поводу так: '... всякий момент требуется известное общее представление о предмете, для того чтобы было, на что цеплять факты...'.

Задачи науки никак не сводятся к сбору фактического материала. Научные теории не появляются как прямое обобщение эмпирических фактов. Как писал А. Эйнштейн, 'никакой логический путь не ведет от наблюдений к основным принципам теории'. Теории возникают в сложном взаимодействии теоретического мышления и эмпирического знания, в ходе разрешения чисто теоретических проблем, в процессе взаимодействия науки и культуры в целом. При построении теории ученые применяют различные способы теоретического мышления. В ходе мысленного эксперимента теоретик как бы проигрывает возможные варианты поведения разработанных им идеализированных объектов. Один из наиболее важных мысленных экспериментов в истории естествознания содержится в критике Галилеем аристотелевской теории движения. Он опровергает предположение Аристотеля о том, что естественная скорость падения более тяжелого тела выше, чем скорость более легкого тела. "Если мы возьмем два падающих тела, - рассуждает Галилей, - естественные скорости которых различны, и соединим тело, движущееся быстрее, с телом, движущимся медленнее, то ясно, что движение тела, падающего быстрее, замедлится, а движение другого тела - ускорится". Таким образом, общая скорость будет меньше скорости одного быстро падающего тела. Однако, два тела, соединенные вместе, составляют тело, большее первоначального тела, которое имело большую скорость, значит, выходит, что более тяжелое тело движется с меньшей скоростью, чем более легкое, а это противоречит предположению. Поскольку аристотелевское предположение было одной из посылок доказательства, оно теперь опровергнуто: доказана его абсурдность. Другим примером мысленного эксперимента является разработка представления об атомизме мира в древнегреческой философии, заключающаяся в последовательном разрезании куска какого-либо вещества на две половины. В результате многократного повторения этого действия необходимо выбрать между полным исчезновением вещества (что, естественно, невозможно) и мельчайшей неделимой частицей - атомом. Более близкие мысленные эксперименты - цикл Карно в термодинамике, а в последнее время мысленные эксперименты в теории относительности и квантовой механике, в частности, при обосновании Эйнштейном общей и специальной теории относительности.

Математический эксперимент - это современная разновидность мысленного эксперимента, при котором возможные последствия варьирования условий в математической модели просчитываются на компьютерах. Пример - метод Монте-Карло, позволяющий математически моделировать случайные процессы (диффузия, рассеяние электронов в твердых телах, детектирование, связь и т.д.) и вообще любые процессы, на протекание которых влияют случайные факторы, а именно оценка некоторого интеграла с помощью среднего значения подынтегральной функции некой случайной величины с известной функцией распределения. В этом случае достаточно сравнить ограниченное число экспериментальных данных с практически неограниченным набором расчетных значений, полученных при изменении большого числа параметров, чтобы подтвердить правильность математического эксперимента.

Большое значение для ученых, особенно для теоретиков, имеет философское осмысление сложившихся познавательных традиций, рассмотрение изучаемой реальности в контексте картины мира. Обращение к философии особенно актуально в переломные этапы развития науки. Великие научные достижения всегда были связаны с выдвижением философских обобщений. Философия содействует эффективному описанию, объяснению, а также пониманию реальности изучаемой наукой. Часто сами философы в результате осмысливания общей картины мира приходят к фундаментальным выводам, имеющим первостепенное значение для естественных наук. Достаточно вспомнить учение древнегреческого философа Демокрита об атомистическом строении веществ или назвать знаменитый труд Г.Ф. Гегеля "Философия природы", в котором дано философское обобщение картины мира. Историческое значение "Философии природы" состоит в попытке рациональной систематизации и установления связи между отдельными ступенями развития неорганической и органической природы. В частности, это позволило Гегелю предсказать периодическую систему элементов: "Следовало бы поставить себе задачу познать показатели отношений ряда удельных тяжестей как некоторую систему, вытекающую из правила, которое бы специфицировало бы арифметическую множественность в ряд гармонических узлов. Такое же требование должно было быть поставлено и познанию указанных выше рядов химического сродства". В свою очередь, великие естествоиспытатели, изучая природные явления, поднимались до философских обобщений природных закономерностей. Таков универсальный принцип дополнительности, сформулированный Н. Бором: более точное определение одной из дополняющих друг друга характеристик объекта или явления приводит к уменьшению точности других. Этот принцип реализуется во всех методах, изучающих природу, человека, общество. В квантовой механике он известен как принцип Гейзенберга: <?xml version="1.0"?>
(<?xml version="1.0"?>
- постоянная Планка): чем меньше интервал неопределенности координаты квантовой частицы, тем больше интервал неопределенности ее импульса и наоборот. Разделив и умножив левую часть на скорость частицы, получаем аналогичное соотношение для интервала энергии частицы и интервала времени, в котором измеряется энергия: <?xml version="1.0"?>
. Другой пример - двойственность электромагнитного излучения: проявление волновой и корпускулярной природы. В зависимости от условий эксперимента, материя проявляет свои волновые или корпускулярные свойства. Например, свет ведет себя как электромагнитная волна при взаимодействии с дифракционной решетки и описывается системой уравнений Максвелла. В опытах же по внешнему фотоэлектрическому эффекту, эффекту Комптона свет ведет себя как частица (фотон) с энергией <?xml version="1.0"?>
, где <?xml version="1.0"?>
- частота электромагнитного излучения

С ростом частоты <?xml version="1.0"?>
волна все заметнее ведет себя как частица. Чем больше в каком-либо явлении проявляются волновые свойства (например, дифракция и интерференция), тем меньше проявление корпускулярных свойств. Во внешнем фотоэффекте картина обратная. Еще один общий принцип принадлежит францисканскому монаху и философу Оккама (XIV в.) и известен как "бритва Оккама": чем ближе мы к истине, тем проще основные законы ее описывающие, или: не умножай сущностей сверх необходимого, то есть объясняй факты простейшим способом.

Известный химик и философ М. Полани показал в конце 50-х годов нашего века, что предпосылки, на которые ученый опирается в своей работе, невозможно полностью выразить в языке. Полани писал: 'То большое количество учебного времени, которое студенты-химики, биологи и медики посвящают практическим занятиям, свидетельствует о важной роли, которую в этих дисциплинах играет передача практических знаний и умений от учителя к ученику. Из сказанного можно сделать вывод, что в самом центре науки существуют области практического знания, которые через формулировки передать невозможно'. Знания такого типа Полани назвал неявными. Эти знания передаются не в виде текстов, а путем непосредственной демонстрации образцов и непосредственного общения в научной школе.

Термин 'менталитет' применяется для обозначения тех слоев духовной культуры, которые не выражены в виде явных знаний, но, тем не менее, существенно определяют лицо той или иной эпохи или народа. Но и любая наука имеет свой менталитет, отличающий ее от других областей научного знания, но тесно связанный с менталитетом эпохи.

Важнейшими средствами сохранения и распространения научного менталитета являются миграция ученых для работы из лаборатории в лабораторию, желательно не только в пределах одной страны, и создание и поддержка научных школ. Только в научных школах молодые ученые могут воспринять научный опыт, знания, методологию и менталитет научного творчества. В качестве примера, можно упомянуть в физике могучие школы Резерфорда за рубежом и школу А.Ф. Иоффе в нашей стране. Разрушение научных школ приводит к полному разрушению научных традиций и самой науки.

© Центр дистанционного образования МГУП